Michael J. Crowe

Ten Misconceptions about Mathematics
and Its History

For over two decades, one of my major interests has been reading,
teaching, and writing history of mathematics. During those decades, I have
become convinced that ten claims I formerly accepted concerning math-
ematics and its development are both seriously wrong and a hindrance
to the historical study of mathematics. In analyzing these claims, I shall
attempt to establish their initial plausibility by showing that one or more
eminent scholars have endorsed each of them; in fact, all seem to be held
by many persons not fully informed about recent studies in history and
philosophy of mathematics. This paper is in one sense a case study; it has,
however, the peculiar feature that in it I serve both as dissector and frog.
In candidly recounting my changes of view, I hope to help newcomers
to history of mathematics to formulate a satisfactory historiography and
to encourage other practitioners to present their own reflections. My at-
tempt to counter these ten claims should be prefaced by two qualifica-
tions. First, in advocating their abandonment, I am not in most cases urg-
ing their inverses; to deny that all swans are white does not imply that
one believes no swans are white. Second, I realize that the evidence I ad-
vance in opposition to these claims is scarcely adequate; my arguments
are presented primarily to suggest approaches that could be taken in more
fully formulated analyses.

1. The Methodology of Mathematics Is Deduction

In a widely republished 1945 essay, Carl G. Hempel stated that the
method employed in mathematics ‘‘is the method of mathematical dem-
onstration, which consists in the logical deduction of the proposition
to be proved from other propositions, previously established.’” Hempel
added the qualification that mathematical systems rest ultimately on ax-
ioms and postulates, which cannot themselves be secured by deduction.?
Hempel’s claim concerning the method of mathematics is widely shared;
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I accepted it as a young historian of mathematics, but was uneasy with
two aspects of it. First, it seemed to make mathematicians unnecessary
by implying that a machine programmed with appropriate rules of in-
ference and, say, Euclid’s definitions, axioms, and postulates could deduce
all 465 propositions presented in his Elements. Second, it reduced the role
of historians of mathematics to reconstructing the deductive chains at-
tained in the development of mathematics.

I came to realize that Hempel’s claim could not be correct by reading
a later publication, also by Hempel; in his Philosophy of Natural Science
(1966), he presented an elementary proof that leads to the conclusion that
deduction cannot be the sole method of mathematics. In particular, he
demonstrated that from even a single true statement, an infinity of other
true statements can be validly deduced. If we take ““or’’ in the nonexclusive
sense and are given a true proposition p, Hempel asserted that we can
deduce an infinity of statements of the form *‘p or g’’ where g is any prop-
osition whatsoever. Note that all these propositions are true because with
the nonexclusive meaning of ‘‘or,” all propositions of the form “p or
q’’ are true if p is true. As Hempel stated, this example shows that the
rules of logical inference provide only tests of the validity of arguments,
not methods of discovery.2 Nor, it is important to note, do they provide
guidance as to whether the deduced propositions are in any way signifi-
cant. Thus we see that an entity, be it man or machine, possessing the
deductive rules of inference and a set of axioms from which to start, could
generate an infinite number of true conclusions, none of which would be
significant. We would not call such results mathematics. Consequently,
mathematics as we know it cannot arise solely from deductive methods.
A machine given Euclid’s definitions, axioms, and postulates might deduce
thousands of valid propositions without deriving any Euclidean theorems.
Moreover, Hempel’s analysis shows that even if definitions, axioms, and
postulates could be produced deductively, still mathematics cannot rely
solely on deduction. Furthermore, we see from this that historians of
mathematics must not confine their efforts to reconstructing deductive
chains from the past of mathematics. This is not to deny that deduction
plays a major role in mathematical methodology; all I have attempted to
show is that it cannot be the sole method of mathematics.

2. Mathematics Provides Certain Knowledge

In the same 1945 essay cited previously, Hempel stated: ““The most
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distinctive characteristic which differentiates mathematics from the various
branches of empirical science. . .is no doubt the peculiar certainty and
necessity of its results.”” And, he added: ‘‘a mathematical theorem, once
proved, is established once and for all....’’3 In noting the certainty of
mathematics, Hempel was merely reasserting a view proclaimed for cen-
turies by dozens of authors who frequently cited Euclid’s Elements as the
prime exemplification of that certainty. Writing in 1843, Philip Kelland
remarked: ¢‘It is certain that from its completeness, uniformity and fault-
lessness, . . . and from the universal adoption of the completest and best
line of argument, Euclid’s ‘Elements’ stand preeminently at the head of
all human productions.’’# A careful reading of Hempel’s essay reveals a
striking feature; immediately after noting the certainty of mathematics,
he devoted a section to ‘“The Inadequacy of Euclid’s Postulates.”” Here
in Hilbertian fashion, Hempel showed that Euclid’s geometry is marred
by the fact that it does not contain a number of postulates necessary for
proving many of its propositions. Hempel was of course correct; as early
as 1892, C. S. Peirce had dramatically summarized a conclusion reached
by most late-nineteenth-century mathematicians: ‘“The truth is, that ele-
mentary [Euclidean] geometry, instead of being the perfection of human
reasoning, is riddled with fallacies....”’s

What is striking in Hempel’s essay is that he secems not to have realized
the tension between his claim for the certainty of mathematics and his
demonstration that perhaps the most famous exemplar of that certainty
contains numerous faulty arguments. Hempel’s claim may be construed
as containing the implicit assertion that a mathematical system embodies
certainty only after all defects have been removed from it. What is prob-
lematic is whether we can ever be certain that this has been done. Surely
the fact that the inadequacy of some of Euclid’s arguments escaped detec-
tion for over two millennia suggests that certainty is more elusive than
usually assumed. Moreover, in opposition to the belief that certainty can
be secured for formalized mathematical systems, Reuben Hersh has stated:
‘It is just not the case that a doubtful proof would become certain by
being formalized. On the contrary, the doubtfulness of the proof would
then be replaced by the doubtfulness of the coding and programming.’’é
Morris Kline has recently presented a powerful demonstration that the
certainty purportedly present throughout the development of mathematics
is an illusion; I refer to his Mathematics: The Loss of Certainty, in which
he states: ‘“The hope of finding objective, infallible laws and standards
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has faded. The Age of Reason is gone.’’” Much in what follows sheds
further light on the purported certainty of mathematics, but let us now
proceed to two related claims.

3. Mathematics Is Cumulative

An elegant formulation of the claim for the cumulative character of
mathematics is due to Hermann Hankel, who wrote: ‘‘In most sciences
one generation tears down what another has built and what one has
established another undoes. In Mathematics alone each generation builds
a new story to the old structure.’’8 Pierre Duhem made a similar claim:
‘‘Physics does not progress as does geometry, which adds new final and
indisputable propositions to the final and indisputable propositions it
already possessed....””? The most frequently cited illustration of the
cumulative character of mathematics is non-Euclidean geometry. Consider
William Kingdon Clifford’s statement: ‘“What Vesalius was to Galen, what
Copernicus was to Ptolemy, that was Lobatchewsky to Euclid.’’1° Clif-
ford’s claim cannot, however, be quite correct; whereas acceptance of
Vesalius entailed rejection of Galen, whereas adoption of Copernicus led
to abandonment of Ptolemy, Lobachevsky did not refute Euclid; rather
he revealed that another geometry is possible. Although this instance il-
lustrates the remarkable degree to which mathematics is cumulative, other
cases exhibit opposing patterns of development. As I wrote my History
of Vector Analysis,'! 1 realized that I was also, in effect, writing The
Decline of the Quaternion System. Massive areas of mathematics have,
for all practical purposes, been abandoned. The nineteenth-century
mathematicians who extended two millennia of research on conic section
theory have now been forgotten; invariant theory, so popular in the nine-
teenth century, fell from favor.2 Of the hundreds of proofs of the Py-
thagorean theorem, nearly all are now nothing more than curiosities.!?
In short, although many previous areas, proofs, and concepts in mathe-
matics have persisted, others are now abandoned. Scattered over the land-
scape of the past of mathematics are numerous citadels, once proudly
erected, but which, although never attacked, are now left unoccupied by
active mathematicians.

4. Mathematical Statements Are Invariably Correct

The most challenging aspect of the question of the cumulative character
of mathematics concerns whether mathematical assertions are ever refuted.
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The previously cited quotations from Hankel and Duhem typify the
widespread belief that Joseph Fourier expressed in 1822 by stating that
mathematics ‘‘is formed slowly, but it preserves every principle it has once
acquired. . ..”’14 Although mathematicians may lose interest in a particular
principle, proof, or problem solution, although more elegant ways of for-
mulating them may be found, nonetheless they purportedly remain. In-
fluenced by this belief, I stated in a 1975 paper that ‘‘Revolutions never
occur in mathematics.”’!5 In making this claim, I added two important
qualifications: the first of these was the ‘‘minimal stipulation that a
necessary characteristic of a revolution is that some previously existing
entity (be it king, constitution, or theory) must be overthrown and ir-
revocably discarded’’; second, I stressed the significance of the phrase ‘‘in
mathematics,”’ urging that although ‘‘revolutions may occur in mathe-
matical nomenclature, symbolism, metamathematics, [and] methodolo-
gy...,”" they do not occur within mathematics itself.!¢ In making that
claim concerning revolutions, I was influenced by the widespread belief
that mathematical statements and proofs have invariably been correct.
I was first led to question this belief by reading Imre Lakatos’s brilliant
Proofs and Refutations, which contains a history of Euler’s claim that
for polyhedra V-E + F' = 2, where V'is the number of vertices, £ the num-
ber of edges, and F the number of faces.1? Lakatos showed not only that
Euler’s claim was repeatedly falsified, but also that published proofs for
it were on many occasions found to be flawed. Lakatos’s history also
displayed the rich repertoire of techniques mathematicians possess for
rescuing theorems from refutations.

Whereas Lakatos had focused on a single area, Philip J. Davis took
a broader view when in 1972 he listed an array of errors in mathematics
that he had encountered.!® Philip Kitcher, in his recent Nature of Math-
ematical Knowledge, has also discussed this issue, noting numerous er-
rors, especially from the history of analysis.!® Morris Kline called atten-
tion to many faulty mathematical claims and proofs in his Mathematics:
The Loss of Certainty. For example, he noted that Ampére in 1806 proved
that every function is differentiable at every point where it is continuous,
and that Lacroix, Bertrand, and others also provided proofs until Weier-
strass dramatically demonstrated the existence of functions that are every-
where continuous but nowhere differentiable.?® In studying the history
of complex numbers, Ernest Nagel found that such mathematicians as Car-
dan, Simson, Playfair, and Frend denied their existence.2! Moreover,
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Maurice Lecat in a 1935 book listed nearly 500 errors published by over
300 mathematicians.2? On the other hand, René Thom has asserted: ‘“There
is no case in the history of mathematics where the mistake of one man
has thrown the entire field on the wrong track. ... Never has a signifi-
cant error slipped into a conclusion without almost immediately being
discovered.’’23 Even if Thom’s claim is correct, the quotations from Duhem
and Fourier seem difficult to reconcile with the information cited above
concerning cases in which concepts and conjectures, principles and proofs
within mathematics have been rejected.

5. The Structure of Mathematics Accurately Reflects Its History

In recent years, I have been teaching a course for humanities students
that begins with a careful reading of Book I of Euclid’s Elements. That
experience has convinced me that the most crucial misconception that
students have about mathematics is that its structure accurately reflects
its history. Almost invariably, the students read this text in light of the
assumption that the deductive progression from its opening definitions,
postulates, and common notions through its forty-eight propositions ac-
curately reflects the development of Euclid’s thought. Their conviction in
thisregard is reinforced by the fact that most of them have earlier read Aris-
totle’s Posterior Analytics, in which that great philosopher specified that
for a valid demonstration ‘‘the premises . . . must be . . . better known than
and prior to the conclusion. . . .’’2¢ My own conception is that the develop-
ment of Euclid’s thought was drastically different. Isn’t it plausible that
in composing Book I of the Elements, Euclid began not with his defini-
tions, postulates, and common notions but rather either with his extremely
powerful 45th proposition, which shows how to reduce areas bounded by
straight lines to a cluster of measurable triangular areas, or with his magnifi-
cent 47th proposition, the Pythagorean theorem, for which he forged a proof
that has been admired for centuries. Were not these two propositions the
ones he knew best and of which he was most deeply convinced? Isn’t it
reasonable to assume that it was only after Euclid had decided on these
propositions as the culmination for his first book that he set out to con-
struct the deductive chains that support them? Is it probable that Euclid
began his efforts with his sometimes abstruse and arbitrary definitions—
‘‘a point is that which has no parts’’—and somehow arrived forty-seven
propositions later at a result known to the Babylonians fifteen centuries
earlier? An examination of Euclid’s 45th and 47th propositions shows that
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they depend upon the proposition that if two coplanar straight lines meet
at a point and make an angle with each other equal to two right angles,
then those lines are collinear. Should it be seen as a remarkable coincidence
that thirty-one propositions earlier Euclid had proved precisely this result,
but had not used it a single time in the intervening propositions? It seems
to me that accepting the claim that the history and deductive structures
of mathematical systems are identical is comparable to believing that Sac-
cheri was surprised when after proving dozens of propositions, he finally
concluded that he had established the parallel postulate.

Is not the axiomatization of a field frequently one of the last stages,
rather than the first, in its development? Recall that it took Whitehead and
Russell 362 pages of their Principia Mathematica to prove that 1+1=2,
Calculus texts open with a formulation of the limit concept, which took
two centuries to develop. Geometry books begin with primary notions and
definitions with which Hilbert climaxed two millennia of searching.
Second-grade students encounter sets as well as the associative and com-
mutative laws—all hard-won attainments of the nineteenth century. If
these students are gifted and diligent, they may years later be able to
comprehend some of the esoteric theorems advanced by Archimedes or
Apollonius. When Cauchy established the fundamental theorem of the
calculus, that subject was nearly two centuries old; when Gauss proved
the fundamental theorem of algebra, he climaxed more than two millen-
nia of advancement in that area.?5 In teaching complex numbers, we first
justify them in terms of ordered couples of real numbers, a creation of
the 1830s. After they have magically appeared from this process, we
develop them to the point of attaining, say, Demoive’s theorem, which
came a century before the Hamilton-Bolyai ordered-couple justification
of them. In presenting a theorem, first we name it and state it precisely
so as to exclude the exceptions it has encountered in the years since its
first formulation; then we prove it; and, finally, we employ it to prove
results that were probably known long before its discovery. In short, we
reverse history. Hamilton created quaternions in 1843 and simultaneous-
ly supplied a formal justification for them, this being the first case in which
a number system was discovered and justified at the same time; half a
century later Gibbs and Heaviside, viewing the quaternion method of space
analysis as unsatisfactory, proposed a simpler system derived from quater-
nions by a process now largely forgotten.

Do not misunderstand: I am not claiming that the structure of math-
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ematics, as a whole or in its parts, is in every case the opposite of its history.
Rather I am suggesting that the view that students frequently have, im-
plicitly or explicitly, that the structure in which they encounter areas of
mathematics is an adequate approximation of its history, is seriously defec-
tive. Mathematics is often compared to a tree, ever attaining new heights.
The latter feature is certainly present, but mathematics also grows in root
and trunk; it develops as a whole. To take another metaphor, the math-
ematical research frontier is frequently found to lie not at some remote
and unexplored region, but in the very midst of the mathematical domain.
Mathematics is often compared to art; yet reflect for a moment. Homer’s
Odyssey, Da Vinci’s Mona Lisa, and Beethoven’s Fifth Symphony are
completed works, which no later artist dare alter. Nonetheless, the latest
expert on analysis works alongside Leibniz and Newton in ordering the
area they created; a new Ph.D. in number theory joins Euclid, Fermat,
and Gauss in perfecting knowledge of the primes. Kelvin called Fourier’s
Théorie analytique de la chaleur a ‘‘mathematical poem,’’26 but many
authors shaped its verses. Why did some mathematicians oppose introduc-
tion of complex or transfinite numbers, charging that they conflicted with
the foundations of mathematics? Part of the reason is that, lacking a
historical sense, they failed to see that foundations are themselves open
to alteration, that not only premises but results dictate what is desirable
in mathematics.

6. Mathematical Proof in Unproblematic

Pierre Duhem in his Aim and Structure of Physical Theory reiterated
the widely held view that there is nothing problematic in mathematical
proof by stating that geometry ‘‘grows by the continual contribution of
a new theorem demonstrated once and for all and added to theorems
already demonstrated. . ..’’?7 In short, Duhem was claiming that once a
proposition has been demonstrated, it remains true for all time. Various
authors, both before and after Duhem, have taken a less absolutist view
of the nature and conclusiveness of proof. In 1739, David Hume observed:

There is no . . . Mathematician so expert . . . as to place entire confidence
in any truth immediately upon his discovery of it, or regard it as any
thing, but a mere probability. Every time he runs over his proofs, his
confidence encreases; but still more by the approbation of his friends;
and is rais’d to its utmost perfection by the universal assent and ap-
plauses of the learned world.”’28
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G. H. Hardy concluded in a 1929 paper entitled ‘‘Mathematical Proof®’
that “‘If we were to push it to its extreme, we should be led to rather a
paradoxical conclusion: that there is, strictly, no such thing as mathemati-
cal proof; that we can, in the last analysis, do nothing but point; that proofs
are what Littlewood and I call gas, rhetorical flourishes designed to af-
fect psychology. ...”’2? E. T. Bell in a number of his writings developed
the point that standards of proof have changed dramatically throughout
history. For example, in his Development of Mathematics (1940), he
challenged the assertion of an unnamed ‘‘eminent scholar of Greek math-
ematics’’ that the Greeks, by their ‘“ ‘unerring logic,” had attained such
perfect mathematical results that ‘there has been no need to reconstruct,
still less to reject as unsound, any essential part of their doctrine....’”
Bell responded that among, for example, Euclid’s proofs, ‘‘many have
been demolished in detail, and it would be easy to destroy more were it
worth the trouble.’’3® Raymond Wilder, who also discussed the process
of proof in various writings, asserted in 1944 that ‘‘we don’t possess, and
probably will never possess, any standard of proof that is independent
of the time, the thing to be proved, or the person or school of thought
using it.”” Over three decades later, he put this point most succinctly:
““‘proof’ in mathematics is a culturally determined, relative matter.’’31

That research in history and philosophy of mathematics has contributed
far more toward understanding the nature of proof than simply showing
that standards of proof have repeatedly changed can be illustrated by brief-
ly examining the relevant writings of Imre Lakatos. In his Proofs and
Refutations (1963-64), Lakatos, proceeding from his conviction (derived
from Karl Popper) that conjectures play a vital role in the development
of mathematics and his hope (derived from George Pdlya) that heuristic
methods for mathematics can be formulated, reconstructed the history
of Euler’s conjecture concerning polyhedra so as to show that its history
ill accords with the traditional accumulationist historiography of math-
ematics. Whereas some had seen its history as encompassing little more
than Euler’s formulation of the conjecture and Poincaré’s later proof for
it, Lakatos showed that numerous ‘‘proofs’’ had been advanced in the
interim, each being falsified by counterexamples. Fundamental to this es-
say is Lakatos’s definition of proof as “‘a thought-experiment—or ‘quasi-
experiment’—which suggests a decomposition of the original conjecture
into subconjectures or lemmas, thus embedding it in a possibly quite dis-
tant body of knowledge.’’32 On this basis, Lakatos, in opposition to the
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belief that the proof or refutation of a mathematical claim is final, argued
forcefully that on the one hand mathematicians should seek counterex-
amples to proved theorems (pp. 50ff.) and on the other hand be cautious
in abandoning refuted theorems (pp. 13ff.). Moreover, he warned of the
dangers involved in recourse, if counterexamples are found, to the tech-
niques he called ‘‘monster-barring,”” ‘““monster-adjustment,’’ and ‘‘excep-
tion-barring’’ (pp. 14-33). Lakatos also wrote other papers relevant to the
nature of mathematical proof; for example, in his ‘‘Infinite Regress and
the Foundations of Mathematics’ (1962), he provided insightful critiques
of the ‘‘Euclidean programme’’ as well as of the formalist conception of
mathematical method. In his ‘‘A Renaissance of Empiricism in Recent
Philosophy of Mathematics’’ (1967), he stressed the importance of em-
pirical considerations in mathematical proof, while in his ‘‘Cauchy and
the Continuum . . .,’’ he urged that Abraham Robinson’s methods of non-
standard analysis could be used to provide a radically new interpretation
of the role of infinitesimals in the creation of the calculus.3? The some-
times enigmatic character of Lakatos’s writings and the fact that his in-
terests shifted in the late 1960s toward the history and philosophy of
science—to which he contributed a ‘‘methodology of scientific research
programmes’’—Ileft, after his death in 1974, many unanswered questions
about his views on mathematics. Various authors have attempted to sys-
tematize his thought in this regard,3* and Michael Hallett has advanced
and historically illustrated the thesis that ‘‘mathematical theories can be
appraised by criteria like those of [Lakatos’s] methodology of scientific
research programmes. ..."’35

7. Standards of Rigor Are Unchanging

Writing in 1873, the Oxford mathematician H. J. S. Smith repeated
a conclusion often voiced in earlier centuries; Smith stated: ‘“The methods
of Euclid are, by almost universal consent, unexceptionable in point of
rigour.’’3¢ By the beginning of the present century, Smith’s claim concern-
ing Euclid’s ‘‘perfect rigorousness’’ could no longer be sustained. In his
Value of Science (1905), Henri Poincaré asked: ‘‘Have we finally attained
absolute rigor? At each stage of the evolution our fathers . . . thought they
had reached it. If they deceived themselves, do we not likewise cheat
ourselves?’’ Surprisingly, Poincaré went on to assert that ‘‘in the analysis
of today, when one cares to take the trouble to be rigorous, there can
be nothing but syllogisms or appeals to this intuition of pure number, the
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only intuition which can not deceive us. It may be said that today absolute
rigor is attained.’’37 More recently, Morris Kline remarked: ‘‘No proof
is final. New counterexamples undermine old proofs. The proofs are then
revised and mistakenly considered proven for all time. But history tells
us that this merely means that the time has not yet come for a critical
examination of the proof.’’3s

Not only do standards of rigor intensify, they also change in nature;
whereas in 1700 geometry was viewed as providing the paradigm for such
standards, by the late nineteenth century arithmetic-algebraic considera-
tions had assumed primacy, with these eventually giving way to standards
formulated in terms of set theory. Both these points, as well as a number
of others relating to rigor, have been discussed with unusual sensitivity
by Philip Kitcher. For example, in opposition to the traditional view that
rigor should always be given primacy, Kitcher has suggested in his essay
““Mathematical Rigor—Who Needs 1t?”’ the following answer: ‘‘Some
mathematicians at some times, but by no means all mathematicians at all
times.’’3® What has struck me most forcefully about the position Kitcher
developed concerning rigor in that paper and in his Nature of Mathematical
Knowledge are its implications for the historiography of mathematics. I
recall being puzzled some years ago while studying the history of com-
plex numbers by the terms that practitioners of that most rational dis-
cipline, mathematics, used for these numbers. Whereas their inventor
Cardan called them ‘“‘sophistic,”’ Napier, Girard, Descartes, Huygens, and
Euler respectively branded them ‘‘nonsense,”” ‘‘inexplicable,”” ‘‘imagi-
nary,”” ‘‘incomprehensible,’’ and ‘‘impossible.”” Even more mysteriously,
it seemed, most of these mathematicians, despite the invective implied
in thus naming these numbers, did not hesitate to use them. As Ernest
Nagel observed, ‘‘for a long time no one could defend the ‘imaginary
numbers’ with any plausibility, except on the logically inadequate ground
of their mathematical usefulness.’” He added: ‘‘Nonetheless, mathema-
ticians who refused to banish them. .. were not fools. .. as subsequent
events showed.’’40

What I understand Kitcher to be suggesting is that the apparent irra-
tionality of the disregard for rigor found in the pre-1830 history of both
complex numbers and the calculus is largely a product of unhistorical,
present-centered conceptions of mathematics. In particular, if one
recognizes that need for rigor is a relative value that may be and has at
times been rationally set aside in favor of such other values as usefulness,
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then one will be less ready to describe various periods of mathematics as
ages of unreason and more prone to undertake the properly historical task
of understanding why mathematicians adopted such entities as ‘“impossi-
ble numbers’’ or infinitesimals. As Kitcher suggests, it may be wise for
historians of mathematics to follow the lead of historians of science who
long ago became suspicious of philosophic and historiographic systems
that entail the reconstruction of scientific controversies in terms of such
categories as irrationality, illogicality, and stubbornness.!

8. The Methodology of Mathematics Is Radically Different from
the Methodology of Science

The quotations previously cited from Duhem’s Aim and Structure of
Physical Theory illustrate a subtheme running through that book: that
the methodology of mathematics differs greatly from that of physics. In
other passages, Duhem lamented that physics had not achieved ‘‘a growth
as calm and as regular as that of mathematics’ (p. 10) and that physics,
unlike mathematics, possesses few ideas that appear ‘‘clear, pure, and
simple”’ (p. 266). Moreover, largely because Duhem believed that ‘“these
two methods reveal themselves to be profoundly different’” (p. 265), he
concluded that, whereas history of physics contributes importantly to un-
derstanding physics, ‘‘The history of mathematics is, [although] a
legitimate object of curiosity, not essential to the understanding of math-
ematics’’ (p. 269). The position developed in this and the next section is
that important parallels exist between the methods employed in
mathematics and in physics.

The first author who explicitly described the method that, according
to most contemporary philosophers of science, characterizes physics was
Christiaan Huygens. He prefaced his Treatise on Light by stating that in
presenting his theory of light he had relied upon ‘‘demonstrations of those
kinds which do not produce as great a certitude as those of Geometry,
and which even differ much therefrom, since whereas the Geometers prove
their Propositions by fixed and incontestable Principles, here the Prin-
ciples are verified by the conclusions to be drawn from them. . . .”’42 What
I wish to suggest is that, to a far greater extent than is commonly real-
ized, mathematicians have employed precisely the same method-—the so-
called hypothetico-deductive method. Whereas the pretense is that math-
ematical axioms justify the conclusions drawn from them, the reality is
that to a large extent mathematicians have accepted axiom systems on the
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basis of the ability of those axioms to bring order and intelligibility to
a field and/or to generate interesting and fruitful conclusions. In an im-
portant sense, what legitimized the calculus in the eyes of its creators was
that by means of its methods they attained conclusions that were recognized
as correct and meaningful. Although Hamilton, Grassmann, and Can-
tor, to name but a few, presented the new systems for which they are
now famous in the context of particular philosophies of mathematics (now
largely discarded), what above all justified their new creations, both in
their own eyes and among their contemporaries, were the conclusions
drawn from them. This should not be misunderstood; I am not urging
that only utilitarian criteria have determined the acceptability of math-
matical systems, although usefulness has undoubtedly been important.
Rather I am claiming that characteristics of the results attained—for ex-
ample, their intelligibility—have played a major role in determining the
acceptability of the source from which the results were deduced. To put
it differently, calculus, complex numbers, non-Euclidean geometries, etc.,
were in a sense hypotheses that mathematicians subjected to test in ways
comparable in logical form to those used by physicists.

My claim that mathematicians have repeatedly employed the hypo-
thetico-deductive method is not original; a number of recent authors
have made essentially the same suggestion. Hilary Putnam began a 1975
paper by asking how we would react to finding that Martian mathemati-
cians employ a methodology that, although using full-blown proofs when
possible, also relies upon quasi-empirical tests; for example, his Martians
accept the four-color conjecture because much empirical evidence sup-
ports and none contradicts it. Putnam proceeded to claim that we should
not see this as resulting from some bizarre misunderstanding of the nature
of mathematics; in fact, he asserted that ‘‘we have been using quasi-
empirical and even empirical methods in mathematics all along....’’43
The first example he used to illustrate this claim is Descartes’s creation
of analytical geometry, which depends upon the possibility of a one-to-
one correspondence between the real numbers and the points on a line.
The fact that no justification for this correspondence, let alone for the
real numbers, was available in Descartes’s day did not deter him or his
contemporaries; they proceeded confidently ahead. As Putnam commented
on his Descartes illustration: ‘‘This is as much an example of the use of
hypothetico-deductive methods as anything in physics is’’ (p. 65). Philip
Kitcher, who has stressed the parallels between the evolution of math-
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ematics and of science, has advocated a similar view. In 1981, he stated:

Although we can sometimes present parts of mathematics in axiomatic
form, . . . the statements taken as axioms usually lack the epistemological
features which [deductivists] attribute to first principles. Our knowledge
of the axioms is frequently less certain than our knowledge of the
statements we derive from them. ... In fact, our knowledge of the ax-
ioms is sometimes obtained by nondeductive inference from knowledge
of the theorems they are used to systematize.*

Finally, statements urging that mathematical systems are, like scientific
systems, tested by their results occur in the writings of Haskell Curry,
Willard Van Orman Quine, and Kurt Gédel.*s

9. Mathematical Claims Admit of Decisive Falsification

In the most widely acclaimed section of his Aim and Structure of
Physical Theory, Duhem attacked the view that crucial experiments are
possible in physics. He stated: ‘“Unlike the reduction to absurdity [method]
employed by geometers, experimental contradiction does not have the
power to transform a physical hypothesis into an indisputable truth’’ (p.
190). The chief reason he cited for this inability is that a supposed crucial
experiment can at most decide ‘‘between two sets of theories each of which
has to be taken as a whole, i.e., between two entire systems . . .”" (p. 189).
Because physical theories can be tested only in clusters, the physicist, when
faced with a contradiction, can, according to Duhem, save a particular
theory by modifying one or more elements in the cluster, leaving the par-
ticular theory of most concern (for example, the wave or particle theory)
intact. In effect, Duhem was stating that individual physical theories can
always be rescued from apparent refutations. Having criticized a number
of Duhemian claims, I wish now to pay tribute to him by urging that a
comparable analysis be applied to mathematics. In particular, I suggest
that in history of mathematics one frequently encounters cases in which
a mathematical claim, faced with an apparent logical falsification, has
been rescued by modifying some other aspect of the system. In other words,
mathematical assertions are usually not tested in isolation but in conjunc-
tion with other elements in the system.

Let us consider some examples. Euclid brought his Elements to a con-
clusion with his celebrated theorem that ‘‘no other figure, besides [the
five regular solids], can be constructed which is contained by equilateral
and equiangular figures equal to one another.”” How would Euclid re-
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spond if presented with a contradiction to this theorem—for example, with
a hexahedron formed by placing two regular tetrahedra face to face? It
seems indisputable that rather than rejecting his theorem, he would rescue
it by revising his definition of regular solid so as to exclude polyhedra
possessing noncongruent vertices. For centuries, complex numbers were
beset with contradictions; some charged that they were contradicted by
the rules that every number must be less than, greater than, or equal to
zero and that the square of any number be positive. Moreover, others urged
that no geometric interpretation of them is possible.*¢ Complex numbers
survived such attacks, whereas the cited rules and the traditional defini-
tion of number did not. Many additional cases can be found; in fact,
Lakatos’s Proofs and Refutations is rich in examples of refutations that
were themselves rejected. Of course, mathematicians do at times choose
to declare apparent logical contradictions to be actual refutations;
nonetheless, an element of choice seems present in many such cases.

10. In Specifying the Methodology Used in Mathematics, the Choices
Are Empiricism, Formalism, Intuitionism, and Platonism

For decades, mathematicians, philosophers, and historians have de-
scribed the alternative positions concerning the methodology of math-
ematics as empiricism, formalism, intuitionism, and Platonism. This
delineation of the options seems ill-conceived in at least two ways. First,
it tends to blur the distinction between the epistemology and methodology
of mathematics. Although related in a number of complex ways, the two
areas can and should be distinguished. Epistemology of mathematics deals
with how mathematical knowledge is possible, whereas methodology of
mathematics focuses on what methods are used in mathematics. The ap-
propriateness of distinguishing between these two areas is supported by
the fact that the history of the philosophy of mathematics reveals that
different epistemological positions have frequently incorporated many of
the same methodological claims. Second, this fourfold characterization
tends to blur the distinction between normative and descriptive claims.
To ask what methods mathematicians should use is certainly different from
asking what methods they have in fact used. Failure to recognize this
distinction leads not only to the so-called naturalistic fallacy—the prac-
tice of inferring from ¢‘is’’ to ‘‘ought”—but also to the unnamed opposite
fallacy of inferring from ‘‘ought’ to ‘‘is’’ (or to ‘‘was”’).

It has been my experience that both mathematicians and historians of
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mathematics are primarily interested in issues of the methodology rather
than of the episternology of mathematics. When they turn to writings in
the philosophy of mathematics, they usually find these composed largely
in terms of one or more of the four primarily epistemological positions
mentioned previously. Unfortunately, these categories seem relatively
unilluminating in exploring methodological issues. Reuben Hersh very
effectively discussed this problem in a 1979 paper in which he asked:
“Do we really have to choose between a formalism that is falsified by our
everyday experience, and a Platonism that postulates a mythical fairyland
where the uncountable and the inaccessible lie waiting to be observed. ..?”
Hersh proposed a different and more modest program for those of us in-
terested in investigating the nature of mathematics; he suggested that we
attempt ‘‘to give an account of mathematical knowledge as it really is—
fallible, corrigible, tentative and evolving. ... That is, reflect honestly
on what we do when we use, teach, invent or discover mathematics—by
studying history, by introspection, and by observing ourselves and each
other....”’47 If Hersh’s proposal is taken seriously, new categories will
probably emerge in the philosophy and historiography of mathematics,
and these categories should prove more interesting and illuminating than
the traditional ones. Moreover, increased study of the descriptive meth-
odology of mathematics should itself shed light on epistemological issues.
This paper not only concludes with an endorsement of Hersh’s proposed
program of research, but has been designed to serve as an exemplifica-
tion of it.
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