
Hilbert’s Axioms

CHAPTER

ur purpose in this Chapter is to present (with minor

modifications) a /t of axioms for geonietry proposed
by l—lilbert in 1899, These axioms are sufficient by

modern standards of rigor to supply the foundation

for Euclid’s geometry. This will mean also axiomatizr

ing those arguments where he used intuition, or said

nothing. In particular, the axioms for betweenn ,

‘
based on the work ofPa h In the 1880s, are the most

striking innovation in th. set of axioms

Another Ll’lOlt has been to take the SAS theorem as an axiom, and thus

bypass the method of superposition. It is possible to go the other route, and use
motions offigures as a bas :bulldingblock of geometry, This s what Hadamard

does in his Lettms dc Géaméme Elémemmm (1901706), but the result is a step
backward in logical rity, because he llevermaka pret e

a( tly what kind of

motions he i allowing. See however, Se tion 17 for a fuller d sion of rigid

motions and SAS,
The first benefit of establishing the new

i

stem of axioms is, of course, to
vlndlt:ate Euclid’ Elements, and thu establish ~Euclidean" geometry

rous mathematical discipline, A s ,ond benefit is to pose carefully Lh(t
/

plohr

lems that have bothered geomete - for centuries, such as the question of the
independence of the parallel postulate. Unless one has an exact understanding

of pre ely what it sumed and what is not, one ri going around in cool s
dis ng these questions. In the development of our geometry with the new

a rigor
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axioms, we will keep the parallel postulate

depends on it and what do - not.
Besides presenting the axioms, thi chapter will also contain the first con

sequences of the axioms, i luding different proofs of some of But id’s early

propos ons, until we have established enough so that Euclid’s later re lts can
be deduced without difficulty from fire new foundations we have tablished. in

s ons 10, 11, 12, we show how to recover all the results ofEuclid, Books 171v,
except for the theory of area, whose proof is postponed until chapter 5.

parate and note carefully what

6 Axioms of Incidence

The axioms of incidence deal with points and lines and melt inters ctions. The
points and lines are undefined objects We simply postulate a set, whose ele

ments are called points, together with certain subsets, which we call Imes. We do

not say what the points are, nor which subsets form lines, but we do require that

these undefined notions obey certain axioms:

11. For any two distinct points A.E, there exists a unique line lcontaining AB.

12. Every line :ontains at least two points.

13. There exi. three noncollinear points (that is, three points not all contained
in a single line).

Definition
A set whose elements are called points, together with a set of subsets called

lines, satisfying the axioms (11), (12), (13), will be called an incidence geometry.
if a point p belongs to a line i, we will say that p lies on 1, or that 1 passes

through P.

From this modest beginning we cannot expect to get very interesting results,
but just to illustrate the process, let us see how one can prove meorems based
on these axioms.

Proposition 6.1

Two dlsm‘lflt lines can have at most one point in common.

Hoof Let l. m be two lines, and suppose they both contain the points 23.13, with
A e B. According to axiom (11), there is a unique line containing both A and B,

so i must be equal to m.

Note that this fact, which was used by Euclid in the proof of (1.4) with the
rather weak excuse that “two lines cannot enclos a space," follows here from

the uniqueness part of axiom (11). This should indicate the importance of state
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ing explicitly the uniqueness of an ob which was rarely done in Euclid’s

Elements.
Now we have an axiom system, con 'ng of the undefined sets of points

and lines, and the axioms (l1)e(13). A model of that axiom system is a realization

of the undefined terms in some particular context, such that the axioms are sate
isfied. You could also think of the model as an example of die incidence geometry

defined above.

Example 6.1.1 (The real Cartesian
plane)

Here the set of points is the set 1R2 of
ordered pairs ofreal number The lines (pug)
are those subse s ofpoints P:(x. y) that

sa sfy a linear equation ax + by + e:0 (away)
in the variables x, i). To verify that the
axioms hold, for (11) think of the “two

point formula” from analytic geometry:
Given two points A:(opoz) and B:

(17,172). They lie on the line

[72 — a2
14—112: (x—ai)

171 — a]

if a. e or, ifs,:17,, they lie on fire line
)c
:a]. To verify (12), take any linear

equation involving )4. Substitute two different values of X, and solve for y. This

gives two points on the line. If the equation did not involve y, say )c:a, take
the points (e,0) and (e,1). To verify (13), consider the points (0.0),(0.1),
(1,0). One sees easily that there is no linear equation with all three points as

solutions.

Example 6.1.2

One can also make models out of finite A
sets. For example, let the set of points
be a set of three elements {A.B, C}, and
take for lines the subsets {A.B}, (A,C),
and (B,C). We represent this symboli.
cally by the diagram, where the dots B C,

represent the elements of the set, and
the lines drawn on the page . ow which

subsets are to be taken as lines.
This diagram should be understood as purely symbolic, however, and has

nothing to do with a triangle in the ordinary Cartesian plane. The verification of

the axioms in filis case is trivial.
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Definition

Two distinct lines are parallel if they have no points in common. We also say
that any line is parallel to itself.

The parallel postulate, in its equivalent form given by Playfair, can be stated

as a furdier axiom about in dence of lin - However, we do not include th"
axiom in the definition of inc ence geometry. Thus we may speak of an inci

dence geometry that does or does not satisfy Playfair’s axiom.

P. (Playfair’s axiom, also called the parallel axiom). For each point A and each

line I, there is at most one line containing A that is parallel to 1.

Note that the real Cartesian plane (6.1.1) satisfies (P), as you know, and the
threerpoint geometry (6.1.2) satisfies (P) vacuously, b ‘ause there are no distinct
parallel lines at all. Next we give an example ofan incidence geometry that does

not satisfy (P).

Example 6.1.3 A
Let our set consist of five points A.B.C.

D,E, and let the lines be all subsets of E
two points. It is easy to see that this gee
ometry satisfies (11)e(13). However, it
does not satisfy (P), because, for exam.

ple, AB and AC are two distinct lines
through the point A and parallel to the

line DE. 9 C

m

Remember that the word parallel simply means that two lines have no points
in common or are equal. it does not say anything about being in the same
direction, or being equidistant from each other, or anything else.

We say that two models of an axiom system are isomorphic if there exists a
lrtorl correspondence between dieir sets of points in such a way that a subset
of the first set is a line if and only if the corresponding subset of the second

set is a line. For short, we say “the correspondence takes lines into lin s.”

So for example, we see that (6.1.1), (6.1.2), and (6.1.3) are nonisomorphic models
of incidence geometry, for the simple reason that their sets of points have dif

ferent cardinality: There are no 1.to.1 correspondences between any of these

sets.
On the other hand, we can show that any model of incidence geometry

having just three points is isomorphic to the model given in (5.1.2). Indeed, let

{1, Z, 3} be a geometry of three points. By (13), there must be three noncollinear

points. Since there are only three points here, we conclude that there is no
line containing all three. But by (11), each subset of two points must be con.
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tained in a line. Thus (1,2) (2,3), and (1,3) are lin .
Now by (12), every line

contains at least two points, so these are all the po lble lines. in other words,

the lines are just all subsets of two elements. Since (6.1.2) also has this property,
any lrtorl orrespondence between the sets (A,E,C) and (1,2,3) will give an
isomorphism.

By the way, this proofshows that the isomorphism just found is not unique.

There are six choices. This leads to the notion of automorphism.

Definition
An automm‘phlsm ofan incidence geometry is an isomorphism of the geometry

with itself, that is, it is a lrtorl mapping of the set ofpoints onto itself, preserving

lines.

Note that the composition of two automorphisms is an automorphism, and
so is the inverse of an automorphism. Thus the set of automorphisms forms a

group. in the example above, any 1.to.1 mapping of the set of three elements

onto itself gives an automorphism of the geometry, so we that the group of
automorphisms of this geometry is the symmetric group on three letters, 53.

An important question about a set of axioms is whether die axioms are Wider

pendent of each other. That is to say, that no one of diem can be proved as a
consequence of the others. For if one were a consequence ofthe others, then we
would not need that one as an axiom. To try to prove directly that axiom A is

not a consequence of axioms B.CD... is usually futile. So instead, we search

for a model in which axioms B, C,D. .hold but axiom A does not hold. If such
a model exists, dien there can be no proof ofA as a consequence ofEcD,. .

so we conclude that A is independent of the ()fl’lels. This process must be re
peated with each individual axiom, to show that each one is independent of

all the others. With a long list of axioms this can become tedious and difficult,
so we will forgo the process with our full list of axioms. But as an illustrar

tion of what is involved, let us show that the axioms (11), (12), (13), and (P) are
independent.

Proposition 6.2
The mourns (11), (12), (13), (P) are independent of each other.

1»:on We have already seen that (6.1.3) is a model satisfying (11), (12), (13), and

not (P). Hence (P) is independent of the others.
For a model satisfying (11), (12), (P), and not (13), take a set oftwo points and

the one line containing both of them.
Note that (P) is satisfied trivially, be A B
cause there are no points not on the "—‘—'

line i.
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For a model satisfying (11), (13), (P), A
and not (12), take a set of three points
A.E,c, and for lines take the subsets

(A.E),(A,c),(a,c), and (A). The ex.
istent of the onerpoint line (A) cork B C
trad . - (12). Yet (P) is still fulfilled,

because that onerpoint line is then the
unique line through A parallel to (ac).

For a model satisfying (12), (13), (P) A .
and not (11), ju' take a set of three
points and no linxat all. (I;. i C

While we are discussing axiom systems, there are a few more concepts we

should mention. An axiom system is conslsrel'lt if it will never lead to a contrar

diction. That is to say, if it is not possible to prove from the axioms a statement
A and also to prove its negation not A. This is obviously a highly desirable

property of a system of axioms. We do not want to waste our time proving theor

rems from a system of axioms that one day may lead to a contradiction. Una
fortunately, however, the logician Kurt Godel has proved that for any reasonably

rich set of axioms, it will be impossible to prove the consistency of that system.

So we will have to settle for something less, which is relative consistency. A on

as you can find a model for your axiom system within some other mathemati

theory T, it follows that if T is consistent, then also your system of axioms s
consistent. For any contradiction that might follow from your axioms would

then also appear in the theory T, contradicting its consistency. So for example,

if you believe in the cons 'tency of the theory of real numbers, then you must
accept the consistency of Hilbert’s axiom system for geometry, because all ofhis

axioms will hold in the real Cartesian plane. That is the best we can do about the

question of consistency.

Another question about a system of axioms is whether it is categorical. This
means, does it describe a unique mathematical object? Or in other words, is

there a unique model (up to isomorphism) for the system of axioms? in fact, it

will turn out that if we take the entire list of Hilbert's axioms, including the par
allel axiom (P) and Dedekind’s axiom (D), the system will be categorical, and the

unique model will be the real Cartesian plane. (We will prove this result later

(21.3).) Also, if we take all of Hilbert’s axioms, together with (D) and the hyper
bolic axiom (L) (see Section 40), we will have another categorical system, whose

unique model is the noanuclidean Poincare model over the real numbers (Ext
ercise 43.2).

However, from the point of view ofthis book, it is more interesting to have

an axiom system diat is not categorical, and then to investigate the different
possible geometries that can arise. Therefore, we will almost never a ume
Dedekin s axiom (D), and we will only sometime assume Archimedes’ axiom

(A), or the parallel axiom (P).
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Finally, one n ask whether the axiom system is complete, wh means, can

every statement that is true in every model of the axiom system be proved as a

consequen e of the axioms? Again, Godel has shown that any axiomatic system

of reasonable richness cannot be complete. For a fuller discussion of these
questions, see chapter 51 of Kline (1972) on the foundations of mathematics.

Exercises

61 Describe all possible int dentie geometnes on a set of four points, up to iso-

morphism which ones satis y (P)?

62 The Cetntlslem plane otter a nela F Let Fbe any field Take the set F2 of ordered

pairs of elements of the field Fto be the set of points Define lines to be those subsets
defined by inar t.,quations as in Example 61 1 Verify that the xioms (n), (12),
(13) and (1) hold in this model (S . S

ion 14 for more about Carl‘slan planes

over fields)

e 3 A pmlttcmltt plane is a set ofpoints and subsets called lines that satisfy the following

four axioms

Pl. Any two distinct points he on a unique 1ine

P2. Any two lines meet in at least one point

P3. Every lint: contains at l . .1 three points

P4. The :xist three noncollinear points

Note that th axioms imply (11)-(13), so that any projective plane also an moi-
den e geometry show the following

n points. and ther a model ofa(a) Every pro
pro

ive plant having exa ly

(b) The projetitive plane of seven points is unique up to isomorphism

(e) The axioms (e1), (or), (1:3), (134) a

6 4 Let Fbe a field, and le v:F‘ be a th
the set of l-dimensional subspace
“point" is a i.dim sional suhsp

V, then [lit 1 of all “points" contain d in W will b

ll of “points“ and the subsets of“lint

: endent

overF Let ll be

mm of ll “points "So a
sional subspat of

all da“line “ Show that tht t

. ve plant (Exe .is.tsa)

atisfying (11), (12), [13), and
6 5 An afl-me plane is a set of points and b

the following stronger form of playfair

: l, and every point A, the sts a unique lint: rri containing A

(a) Show that any two lin »in
an affine plan hav th

th a 1-to-1 corr. pond.

ame number of points (i e ,
of the two lin s)
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(b) if an affine pla

points in the plant.

(e) if!“ any field. show that the cartesian plane over F[Ext:

an afiine plane

(d) Show that th
of an aihnt: plane with

has a line with exactly ri points. then the total number of
srt

is t; 2) i. a model of

~ With 4, 9. 16, or 25 points (The non
diflicult result of Euler)

t; t; in an incidenc- l:omt:try. consider the relationship of parallelism, “l is parallel to

m," on tht t oflines

a) Givt: an example to show that this need not be an equivalence relation

some the parallel axiom (r), then parallelism is an equivalence

1y. if parallelism
is
an equivalence relation in a given inc

y, then (1’) must hold in that‘ metry

ence geom-

t; 7 Let it be an affine plane (Ex t; 5) A pencil of parallel lin of all the

parallel to a given line (including that line it :lf) we call t..ath peintil ofparal.

lel lint an “ideal point." or a “point at infinity,“ and w y that an idt 1 point “1
il Now let ll’ be the larg d 'm sting of ii

. lpoints A line ot ll’ will be t ubs nsisting of

a lin of ll plus it uniq ideal point, or a new line d the “lin at infinity,“

, nsisting ot all the ideal points
just defined forms a pro(a) Show that this new

plane (Ex. ;

(b) if it is the cartesian plane over a field F (Exercise t; 2), show that the associated

projective plane I1’ 1. isomorphic to tht: proje ive plant: constructed in E

ti 4

ti 8 lfthere are ri + 1 points on one line in a projective plane ll, then the total number
of points in I1 is riZ + ri +1

59 Kirkma hoolgirl problem (1850) is s follows in act tain school tht are 15
’ d to mak a ch day the girls tan

in fivt groups ot thr h girl will be in the

h other girl just ont

formed

To malt .

ti tying the tollowingaxioms

Kl. Two distinct points he on a unique line

K2. All lines contain tht: same number of points

K3. There exist three noncollinear points

K4. Each lin .d in a unique pencil
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K5. Each pencil co . .ts of a who . union is the whole . :
points

. t
of parallel lin

(a) Show that any zifl'lnt: plant: gi a Ku’kmzln geometry where wt: take the p
to be th of all lines parallel to a given line (Hence by Exercise 6 5 there -
Kirkman geometries With 4, 9. lo 25 points)

(b) Show that any Kirkman geometry With 15 points gives a solution of the original
schoolgirl problem

(c) Flnd a solution for the original problem (There are many inequivalent solutions

to this problem )

is 1“ ln a finite inciden

number of points
geometry, the number of lines is greater than or equal to the

7 Axioms of Betweenness

In this section we present axioms to make precise the notions of betweenness
(when one point is in between two others), on which is based the notion of

s edness (when a point i on one side ofa line or the other), the concepts of
inside and outside, and also the concepts of order, when one segment or angle is

bigger than another. We have en the importance of the .
t ncepts in reading

Euclid" geometry, and we have also seen the dangers of using th e concepts

intuitively, without making their meaning precise. So these axioms form an

important part of our new foundations for geometry. At the same time, these
axioms and their consequences may seem difficult to unde stand for many

readers, not because the mathematical oncepts are techn ly difficult, but
becau . the notions of order and separation are so deeply ingrained in our daily

exper .n of life that it is difficult to let go of our intuitions and replace them
with axioms. it i in forgetting what we already know from our inner

nature, and then reconstituting it with an open mind as an external logical
structure.

Throughout this s on we presuppose axioms (11)e(13) of an int 'dence

.nnes separation, sidedne s, and

order will all be based on a single undefined relation, su ject to four axioms. We
postulate a relation between - ts of three points A.B, c, called “B is between A
and c." This relation is. bj to the following axioms.

Bl. If B is between A and C, (written A t B x C), then A.B, C are three distinct
points on a line, and also C >:« B x A.

132. For any two distinct points A, B, there exists a point C such that A >:« B t C.

133. Given three distinct points on a line, one and only one of them is between

the other two.

an exe
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B4. (Pasch). Let A.B,C be diree non A
collinear points, and let I be a line 2
not containing any of A,B. C. If l
contains a point D lying between

A and B, then it must also ntain

either a point lying between A and

C or a point lying between B and C,
but not both.

Definition
If A and B are distinct points, we define the line segmentE to be the set ctmr

sisting of the points A,B and all points lying between A and B. We define a my
angle to be the union of the three line segments (Em andR whenever

A.B,C are three noncollinear poin .
The points A,B,C are the uemees of the

triangle, and the segments EJEAC are the sides of the triangle.

Note: The segmentsE andE are the same sets, because of axiom (B1). The
endpoints A,B of the segment E are uniquely determined by the segment E
(Exer e 7.2). The vertices ABC, and the sides raid? of a triangle ABC

are uniquely determined by the triangle (Exercise 7.3).

With this terminology, we can rephrase (B4) as follow" It a line I that does

not contain any of the vertices A,B. C of a triangle mee one side R, then it

must meet one of the other sides X5 or E5, but not bodi.
From these axioms together with the axioms of incidence (Il)r(13) we will

deduce results about the separation of the plane by a line, and the separation of

a line by a point.

Proposition 7.1 (Plane separation)

Let I be any line Then the set of points not lying on I can he divided into two none

empty subsets S, , Sz With the following properties:

(a) Two points A.B not on l belong to the B
some setfi, or 82) if and only if the A
segment AB does not intersect l.

(b) Two points A, C not Ol’l I belong to the
opposite sets (one in St, the other in

82) if and only if the segment 1% U77 1
terseets I in a point.

We Will refer to the sets S,,S2 as the
two sides of z, and we mil say “A and B

are on the same side ofl,” or “A and C

are on opposite sides tifI." C
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Hoof We start by defining a relation ~ among points not on Z. We will say
A ~ B if either A:B or if the egment [E does not meet I. Out first step is to
show that ~ is an equivalent relation. Clearly, A ~ A by definition, and A ~ B

implies B s A bet -e the et AB does not depend on the order in which we

write A and B. The nontrivial step is to show the relation is transitive: IfA ~ B
and B s C, we must show A s C.

Case 1 Suppose A,B,C are not Cole

linear. Then we consider the triangle

ABC. Since A ~B, I does not meet AB.
Since B ~ C, l does not meet Bi. Now
by Pasch’s axiom (B4), it follows that I
does not meetR. Hence A ~ C.

Case 2 Suppose A,B, C lie on a line m.

Since A, B.C do not lie (m l, the line in is

different from 1. Therefore land in can
meet in at most one point (6.1). But by

(12) every line has at least two points.

Therefore, there exists a point D on l.D
not lying on m.

Now apply axiom (B2) to find a point B such that DiA
i E. Then D.A.B

are collinear (Bl); hence E is not on l, since A is not on l, and the line DAB

already meets lat the point D. Furthermore, the segmentE cannot meet I. For
if it did, the intersection point would be the unique point in which the line AB

meets 1, namely D. In that case D would be between A and B. But we con
structed B so that D*A *5, so by (B3), D cannot lie between A and B. Thus

E ti 2:Q, so A s E. Note also that B does not lie on the line in, because ifB

were on m, then the line AB would be equal to in, so D would lie on m, contrary

to our choice of D. Therefore, A,B,B are diree noncollinear points. Then by

Case 1 proved above, from A ~ B and A ~ B we conclude B ~ B. By Case 1
again, from B ~ B and B ~ C we conclude C ~ E. Applying Case 1 a third time to
the three noncollinear points A, C, B, from A s B and cs B we conclude A ~ c
as required.

Thus we have proved that ~ is an equivalence relation. An equivalence

relation on a set divides that set into a disjoint union of equivalence classes,
and these equivalence classes will satisfy property (a) by definition. To complete
the proof it will be sufficient to show that diere are exactly two equivalence

classes s,.s2 for the relation ~ .
Then to say that Ac meets I, which is equivalent

to A 4 C, will be the same as saying that A, C belong to the opposite sets.
By (13) there exis s a point not on l, so diere is at least one equivalence class

Si. Given A 6 Si, let D be any point on l, and choose by (B2) a point C such that



75 z. Hilhen'sAxioms

A A D r C. Then A and C do not satisfy ~, so there must be at least two equivar
lence s St and 82.

The last ep is to show that there are at most two equivalence class .To do
this, we will show that ifA 7' c and B 7' c, then A ~ B.

Case 1 If A.B,C are not collinear, we
consider the triangle ABC. From A 4- C

we conclude that E meets Z. From
B rC we conclude that BC meets I.
Now by Pasch’s axiom (B4) it follows

that B does not meet I. So A ~B as
required.

Case 2 Suppose A,B. C lie on a line in.

As in Case 2 of the first part of the proof

above, choose a point D on i, not on m,
and use (B2) to get a point E with

DraA *E. Then A ~E as we showed

above.
Now, A + cby hypoth

A B

C

, and A ~ B, so we conclude that C t E, since ~ is
an equivalence relation (if C s B, then A ~ C by transitivity: contradiction).
Looking at the three noncollinear points B,C,E, from E 7' C and B + C we
conclude using Case 1 that B s B. But also A ~ E, so by transitivity, A s B as
required.

Proposition 7.2 (Line separation)

Let A be a point on a line l Then the set of points of I not equal to A can be diVided
into two nonempty subsets Si , $2, the two sides of A on I, such that

(a) B. C are on the same side ofA if and
only ifA is not in the segment If;

(b) B. D ere on opposite sides of A if
end only lfA belongs to the segment

BD.

Hoof Given the line I and a point A on
I, we know from (13) that there exists a

point B not on l. Let m be the line con
taining A and E. Apply (7.1) to the line
in. lfm has two sides 5;,53, we define SI
and $2 to be the intersections of s; and
s; widi 2. Then properties (a) and (b)
follow 'mmediately from the previous

proposition.

'3 A B C l
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The only mildly nontrivial part is to show that S, and Sz are nonempty. By
(12), there is a point B on I different from A. And by (B2) there exists a point D

such that B *A it D. Then Dwill be on the opposite de ofA from B, and will lie
on I, so both sides are nonempty.

Now that we have some basic results on betweenness, we can define rays
and angles.

Definition
Given two distinct points A,B, the ray

7?? is the set cons ring of A, plus all

points on the line AB that are on the

same side ofA as B. The point A is the
origin, or vertex, of the raLAn 1177ng
the union of two rays AB and AC

originating at the same point, its vertex,
and not lying on the same line. (Thus

there is no “zero angle,” and there is no
“straight angleH (180“).) Note that the
vertex of a ray or angle is uniquely de

termined by the ray or angle (proof

similar to Exercises 7.2, 7.3).
The inside (or intenor) of an angle

LBAC consists of all points D such that

D and C are on the same side of the line

AB, and D and B are on the same side of
the line AC. lf ABC is a triangle, the We

side (or interior) of the triangle ABC is

the set of points that are simultaneously
in the insides of the three angles

LBAC.LABC,LACB.

Proposition 7.3 (Crossbar theorem)

Let LBAC be an angle, and let D be a

pomtflfl’w interior ofthe angle Then the

ray AD must meet the segment BT.

Hoof This is similar to Pasch’s axiom (B4), except that we must consider a

line AD that passes through one vertex of the triangle ABC. We will prove it
with Pasch’s axiom and several applications of the plane separation theorem

(7.1).



78 z. Hilliert's Axioms

Let us label the lines AB:2, AC:
in, AD:n. Let E be a point on m such
that E r A r C (B2).We will apply Pasch’s
axiom (B4) to the triangle BCB and the
line n. By construction n meets the side

CB at A. Also, n cannot contain B, be

cause it meets the line l at A. We will

show that n does not meet the segment
BB, so as to conclude by (B4) that it

must meet the s gment 1%.
So we consider the segment LE. This segment meets the line lonly at B, so

all points of the segment, except B, are on the same side of I. By - nstruction, C
is on the opposi ~ide ofl from B, so by (7.1) all points of LE, ex ept B, are on
the opposite side of z from C. On the nth—er hand, since D is in the interior of the
angle LBAC, all the points of the ray AD, except—r}, are on the same side ofl as
C. Thus the segment 1%does not meet the ray AD.

A similar reasoning using the line in shows that all points of the segment 1%,
except E, lie on the same side ofm as B, while the points ofthe ray ofn, opposite

the ray 5‘, lie on the other side of m. Hence the segment BE cannot meet the
opposite ray to 5. Together with the previous step, this shows that the seg

ment LE does not meet die line n. We conclude by (B4) that n meets the seg
ment 1% in a point F.

it remains only to show that F is on die ray E; of the line n. Indeed, B and
F are on die same side of m, and also B and D are on the same side ofm, so (7.1)
D and Fare on the same side of m, and so Dflid Bare on the same side ofA on
the line n. In other words, Flies on the ray AD.

Example 7.3.1
We will show that the real Cartesian plane (6.1.1), with the “usual” notion of

betweenness, provides a model for the axioms (Bl)e(B4).
First, we must make precise what we mean by the usual notion of between

ness. For three distinct real numbers d,I7,c 6 1R, let us define a r 17 r e if either

a < 17 <o or e < b < a. Then it is easy to see that this defines a notion of
betweenness on the real line R that satisfies (B1), (B2), and (B3).
lfA:(apt/12), B: (17,,172), and C: (e,,e2) are three points in R2, let us

define A *B r C to mean that A.B.C are three distinct points on a line, and

that either a, r 17, >:< ci or d2 * 172 r 52, or both. In fact, if either the X7 or the y

coordinates sati'fy this betweenness condition, and if the line is neither hori

zontal nor verti al, then the other coordinates will also sat fy it, because the
points lie on a line, and linear operatio - (addition, multiplication) of real numr
bers either preserve or reverse inequal Thus linear operations preserve ber

tweenness. So we can verify easily that this notion of betweenness in it2 sat
isfies (B1), (B2), and (B3).
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for (B4), let I be a line, and let A.B.C be three noncollinear points not on I.
The line lis defined by some linear equation out + 17y + e 0. Let 7: 1112 _. R be

the linear function defined by ¢(x, y):out + 17y + e. Sinc W is a linear function,

7will preserve betweenne s. for example, if zmeets the segment AB, then 0 will
lie between o(A) and 77(3). In other words, one of w(A).w(B) will be positive and

the other negativ Suppose ¢(A) > 0 and ¢(B) < 0. Consider ¢(C). If ¢(C) > 0,
then lwill meet BC but notE. If ¢(C) < 0, then I will meet AC but not 1%. This
proves (B4).

Exercises

71 Using the axioms of incidence and betweenness and the line separation property,
show that ottour poin A.B.C,D on a line behave as we xpect them to with

Namely, show that

(a) AsB»CandBacauimplyAaBsDandAamu

(b) AsBsDandBrosuimplyAsBsCandAsCsD

72 Civen a segment A’B, show that the
C s A s D He

mined by Lht

: do not exist points Que/EB such that

ct- show that the endpoints A,B of the -gment are uniquely deter-
g ml

7 3 G1Vt:n a tnanglt: ABC, show that th.
are uniquely d

a lint: ( n in .

id E, R. and [TC and the vertit . A,B, (:
rmint:d by the tnanglt: Hint Consider the difie nt ways in which

the triangle

74 Using (ll)—(i:i) and (BU—(154) and their consequent s, show that every line has

infinitely many distinct points

7 5 Show that the lint: separation property (Proposition 7 2) is not a
(B1), (B2), (BB), by onstructing a model of ht of points on

a line, which satisfi (Bl), (B2), [133) but has only finitt y many points (Then by

Extzl’tilb’ 74, line s-paration must fail in this model) For example, in the ring

(0, i, 2, 3, 4) of 11111. ers (mod 5), define a s h a e- itb:‘ (a+e)

n. quenr ot

76 vat: di . ly
from the axioms [11)—(13) and [BU—(B4) that for any two distinct

points A,B, there exists a point C with A s C s B (Hint Ust B2) and (B4) to con-
struct a line that will be forced to meet the :gmentE but dt . not

contain A or B )

7 7 Be careful not to as 'ume without proof statements that may appear obvious For
example, prove the tollowmg

(b) Suppose we are given two distinct ‘————3

point A,B on a line Z Show that AB U 4—0 LBA and EHH:AB B
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7 8 Assume A s B s C on one line. and B
A x D x E on another line Show that the

segment 1%must meet the segment CD
at a point M

\l
9 Show that the intenor ofa triangle is nonempty

7 10 Suppose that a line 1 contains a point D
that is in the inside of a triangle ABC

Then show that the line l must meet (at
least) one ofthe sides ofthe triangle

A C

7 11 A . t U ofpoints in the plane is a convex set ifwhenever A.B are distinct points in U.

then the segment AB is . tirely contained in U Show that th . it a tnangle is

a convex set

ns

7 12 A subset w of the plane is segnieritctmnected it given any two points AB 2 w, there

is a finite uenct: of points A:A,,Az. MA,:B such that for each i:1.2. .,
n
7

l, the segment AiAiH is entirely contained Within W

it ABC is a triangle. show that the erteriorofthe triangle, that is. the set of all points of

the plant: lying neither on the trianglt: nor in its intenor, is a segment—connectt set

7 13 Let A B C,D be four points, no three collinear, and assume that the segments AB,

BC, CD,a have no intersections except at their endpoints Then the unitin of these
tour segments is a simple do it git/artideteml The segments 7E and B1) are the drug

onals of the quadrilateral There are two cases to consider

6Case 1 7E andE meet at a point M

in this case, show that for each pair

of consecutive vertices (e g, A,B), the
remaining two vertices (Co) are on
the same side of the line AB Define A
the interior of the quadrilate al to be
the set or points X such that for each

’side (e g .E), x
is
on the same side ot

the line AB as the remaining vertices

(CD) Show that the interior is a con-
vex set D
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show that one of th diago-
>( nthe pictu . h
erty that the other two

am side oft
the other diagonal B70 the prop rty

that A and C are on the oppositt s

ofthe lin‘BD thzfint the interior of tht

quadrilat al to be the union of the
intenors of the tnangles ABD and CDB
plus the interior of the segment B?
Show in this case that the intenor is

nnected set, but is not

tion to n-sided fig-

2 11 )

\l
4 (Linear ordering) Given a finite set of distinct points on a line, it is possible to label

them Ai.A_r. ”Air in such a way that A, a A, a At if and only if either i < i< k or

k < i < i

715 a,b,c through the

A.B.C of a triangle meet at

points inside the tnanglt: Lab -1

x:a e

Year 17,

2 be

Show that one of tht: two following
arrangem nts must occur

(dAaXsYandBal/aZandCazm A(shown in diagram), or
0

(ii) AaywtanstzamndCaxsz

8 Axioms of Congruence for Line Segments

To the earlier undefined notions of point, line, and betweenness, and to the

earlier axioms (Il)r(13), (B1)7(B4), we now add an undefined notion of congru

ence for line egments, and further axioms (Cl)r(C3) regarding this notion. This

congruence what Euclid called equality of segments. We postulate an unr

defined notion ofeongruenoe, wh . is a relation betwe .n two line .gmentsE
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and CT), written AB 2 CD. For simplicity we will drop the bars over AB in the
notation for a line segment, so long as no confusion can result. This undefined

notion is subject to the following three axioms

C1. Given a line segment AB, and given A E
a ray r originating at a point C, there /s a unique point D on die ray r

7h that AB 2 CD. \QN

CZ. IfAB;CD and AB 2 BF, then CD 2 EF. Every line segment is congruent to
itself.

C3. (Addition). Given three points AB, C

c on a line satisfying ArBrC, and ‘3

three further points D.E,F on a line P D
satisfying D i B a F, if AB 2 DE and \LFBC2EF, then AC 2 DP.

Let us observe how these axioms are similar to Euclid’s postulates and how
they are different. First of all, while Euclid phrases some of his postulates in

terms of constructions (“to draw a line through any two given points,” and “to
draw a circle with any given center and radius”), Hilbert’s axioms are existenr

tial. (11) says for any two distinct points there exists a unique line containing
them. And here, in axiom (C1), it is the existence of the point D (corresponding
to Euclid’s construction (1.3)) that is taken as an axiom. Hilbert does not make
use of ruler and compass constructions. in their place he puts the axiom (C1) of
the existence of line segments and later (C4) the existence of angles. if you like,

you can think of(Cl) and (C4) as being tools, a “transporter of segments” and a

“transporter of angles,” and consider some of Hilbert’s theorems as ccnstrut‘:
tions with these tools.

The second congruence axiom (C2) corresponds to Euclid’s common notion

that “diings equal to the same thing are equal to each other.” This is one part of

the modern notion of an equivalence relation, so to be comfortable in using

congruence, let us show that it is indeed an equivalence relation.

Proposition 8.1

Congruenee is an equivalence relation on the set of line segments.

Hoof To be an equivalence relation, congruence must satisfy three properties.

(1) Reflexiwty: Every segment is congruent to itself. This is explicitly stated in

(C2). And by the way, this corresponds to Euclid’s fourth common notion that

“things which coincide with each other are equal to each other.”
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(2) Symmetry: If AB 2 CD, then CD 2AB. This is a consequent of (C2):
GivenAB 2 CD, and writing AB 2AB by reflexivity, we conclude from (C2) that

CD 2AB.
(3) Transitivity: IfAB;CD and CD 2 EF, then AB 2 EF. This follows by first

using symmetry to show CD 2AB, and then applying (C2). Notice that Hilbert’s
formulation of(Cz) was a clever way of including symmetry and transitivity in a

single statement.
The third axiom (C3) is the counterpart of Euclid’s s - nd common notion,

that “equals added to equals are equal." Let us amplify t s by making a precise

definition of the sum of two segments, and then showing that sums of congruent
segments are congruent.

Definition
Let AB and CD be two given segments.

Choose an ordering A.B of the end: A B E

points ofAB. Let r be the ray on the line »—-—4-—*0——)

I:AB consisting ofB and all the points

of l on the other side ofB from A. Let B a p
be the unique point on the ray r (whose ,/7

existence is given by (C1)) such that

CD 2 BE.
We then define the segment AB to be the sum of the segments AB and CD,

depending on the order A, B, and we will write AB:AB +CD.

Proposition 8.2 (Congruence of sums)
Suppose we are given segments AB;AB and CD;C’D’ Then AB +CD;
A/B/ +CD].

Hoof Let E’ be the point on the line A’B’ defining the sum A’E’:A’B’ + C’D’.
Then A erB by construction of the sum AB +CD, because B is on the ray
from B opposite A. Similarly, A’ *B’ r E’. We have AB ,A’B’ by hypothesis.

Furthermore, we have CD; C’D’ by hypothe- and CDgBB and C’D’;
B’E’ by construction of B and 15’. From (5.1) we know that congruence is an
equivalence relation, so BB;B’E’. Now by (C3) it follows that AB;A’E’ as
required.

Note: Since the segment AB is e ual to the segment BA, it follows in particular
that the sum of two segments independent of the order A.B chosen, up to
congruence. Thus addition is wellrdefined on congruence equivalence class s of

line segments. So we can speak of addition of line segments or congruent seg:
ments without any danger (cf. also Exercise 5.1, which shows that addition of
line segments is associative and commutative, up to congruence). Later (Section
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19) we will also define multiplication of segments and so create a field of seg
ment arithmetic.

Euc s diird common notion is that “equals subtracted from equals are

equal." Bearing in mind that subtraction does not always make sense, we can
interpret this common notion as follows.

Proposition 8.3

Given three points A.B.C on a line such

that A r B r C, and given points B.F on a

ray originating from a point D, suppose
that AB 2 DB and AC 5 DP. Then B will
17!; between D and F, and BC 2 EF. (We
regard BC as the difference of AC and

AB)

Hoof Let F’ be the unique point on the ray originating at E, opposite to D, such
that BC 2 BF’. Then from AB; DB and BC 2 BF’ we conclude by (C3) that
AC;DF’. But F and F’ are on the same ray from D (check!) and also AC 2 DP,
so by (C2) and the uniqueness part of (Cl), we conclude that F:F’. It follows
that D 4 E >:« F and BC 2 BF, as required.

Note the role played by the uniqueness part of (C1) in the above proof. We
can regard this uniqueness as corresponding to Euclid’s fifth common notion,

"the whole is greater than the part.” Indeed, this statement could be interpreted

as meaning, ifA r B r C, then AB cannot be congruent to AC. And indeed, diis
follows from (C1), because B and C are on the same ray from A, and ifAB;AC,
then B and C would have to be equal by (C1).

So we see that Euclid’s common notions, at least in the case of congruence of
line segments, can be deduced as consequences of the new axioms (Cl):(C3).

Another notion used by Euclid without definition is the notion of inequality of
line gments. Let us see how we can define the notions of greater and lesser

also using our axioms.

Definition 5
Let AB and CD be given line segments. VWe will say that AB is less than CD,
written AB < CD, if there exists a pointB in between C and D such diat AB ; \\
CE. In this case we say also that CD is

greater than AB, written CD >AB.



35 z. Hilliert's Axioms

In the next proposition, we will see that this notion ofl dian is compatible

with congruen and gives an order relation on congruence equivalence cla.

of line segment.

Proposition 8.4

(a) Given line segments AB 2AB and CD 2CD, then AB < CD ifand only if
A’B’ < C’D’.

(b) The relation < gives an order relation on line segments up to congruence. in

the fozzoiving sense

(i) IfAB < CD, and CD <BF, then AB <BF.

(ii) Given two line segments AB, CD. one and only one of the three following 5(7er
tions holds" AB < CD, AB 2 CD, AB > CD.

Hoof (a) Given AB gA’B’ and CD;

C’D’, suppose that AB < CD. Then A B
there is a point B such that AB 3 CB ./
and CxBiD. Leg: be the unique C 5 1)
point on the ray CD’ such that CB 2 “\t‘:

C’E’. it follows from (8.3) that C'iEIx A' /

D’. Furthermore, by transitivity of con \P
grue e AB 2 CH, so A’B’ < C’D’ as /D’required. The “if and only if” statement 5
follows by applying die same argument c
starting widi A’B’ < C’D’.

(b) (i) Suppose we are given AB <
CD and CD <EF. Then by definition,
there is a point X 6 CD such that AB;
CX, and there is a point YeBB such

that CD 2 BY. Let zeE be such that c X D
CX;Bz. Then by (3.3) we have B 2*

Y. It follows that B x z F (Exercise 7.1) E 2 Y F
and that AB 2 B2. Hence AB < EF as -—‘—'——

required.

(ii) Given line segments AB and CD,
let B be the unique point on the ray5 g
for which AB 3 CB. Then either D:B Vor CrErD or CrDiE. We cannot

have Dr CrB because D and B are on C

the same side ofC. These conditions are N
equivalent to AB 2 CD, or AB < CD, orAB > CD, respectively, and one and

only one of diem must hold.
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Example 8.4.1

Let us define congruence for line seg '5 :(hi i“)
ment. n the real Carte. an plane 1R1, so '
that it becomes a model for the axioms
(Il):(I3), (Bl):(B4), and (Cl):(C3) that

we have introduced so far. We have

already seen how to define lines and

betweenness (7.3.1). Given two points A :(onat)
A:(apaz) and B:(171.172), we define

the distance d(A,B) by

d(A.B):i/(ai — In)2 + (a2 — 172V.

This is sometimes called the BucIiaean distance or the BueIidean metric on lRZ.
Note that d(A,B) 2 0, and d(A,B):0 only ifA:B.

Now we can give an interpretation ofthe undefined notion of congruence in

this model by definingAB 2 CD ifd(A.B):d(C.D). Let us verify that the axioms

(C1), (C2), (C3) are satisfied.
For (C1), we suppose that we are

given a segment AB, and let d:d(A,B).

We also suppose that we are given a

point C:(51.132) and a ray emanat:
ing from C. For simplicity we will

assume that the ray has slope in > 0
and that it is going in the direction of
increasing choordinate (we leave the

other cases to die reader). Then any

point D on this ray has coordinates D:

(at +h.cz +mh) for some 11 2 0. The
corresponding distance is

d(C,D):h\/1+ m2.

To find a point D with AB 2 CD is then equivalent to solving the equation
(in a variable h > o)

hvl +m2:di

where m and a > o are given. Clearly, there is a unique solution h 2 1R, h > 0,
for given a, m. This proves (C1).

The second axiom (C2) is trivial from the definition of congruence using a
distance function.
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To prove (C3), it will be sufficient to

prove that the distance function is addir C
tive for points in a line: If A r B r C, ‘3

then

d(A.B) +a(B,C) :a(A.C). 4

Suppose the line is i:mx+b, and

A:(ahaz) is the point with smallest
choordinate.

Then there are hit > 0 such that

B:(a, + h.a2 + mh).

C: (a, +h+k,a2 +m(h+k)).

In this case
d(A,B):1’!\/1+l7l2,

d(B. C):ki/l +m2,

d(A.C):(h + 1f)\/1+17l2.

so the additivity of the distance function follows.

We will sometimes call this model, the real Cartesian plane with congruence
of segments defined by the Euclidean distance function, the standard model of

our axiom system.

Exercises

The following e (unless otherwise specified) take plat-
axioms [ll)—(13). (B1)_(B4), (CU—(CS)

in a geometry With

8 1 (a) Show that addition of line segments is as )Clallvt: Given segments AB.CD.BF,
and taking A. B in order then (AB+CD) +BF:AB + (CD+ EF) (This mt. s that

we obtain the same segment as the sum, not Just congruent segments )

(b) Show that addition of li egments is commutative up to congruence Given

segments AB. CD, then AB +CD 2 CD +AB

8 N Show that “halves oft uals ual" in the following if AB CD. and ifE is

a midpoint otAB in th .ns that A a: Bit B and AB 2 BB. and ifB a midpoint of

CD, then AB 9 CF (No that w ha ot yet s ’d anything about the existt i ofa

midpoint That will come later (St "1 w) ) Concludt: that a midpoint of AB, if it

. sts, is umq .

83 Show that addition pre ves inequalities if AB < CD and if EF is any other seg-

ment. then AB +EF < CD +EF
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84 Let r be a ray originating at a point A_

and l ,t s he a ray originating at a point

B Show that th
1); r a s of tht: set V onto the t

p congrut and hetw ri-

in other word », iffor any x e r we
X’:p(x) is, then for any X. Y.

zer, Xygx’lfl, and Ks Y=sZ<2

X’ s Y’ s z’

6)

8 5 Giv in two distintlt points O.A, we dehne the L‘H'th.’ with center 0 and radius GA to be

the et I‘ of all points B such that 0A
,
OB

(a) show that any line through 0mt the circle in exactly two points

(b) Show that a circle contains infinitely many points

(Warning It is not obvious from this definition whether the center 0
is uniquely de-

termined by tht t of points I‘ that form the circle We will prove that later (Propo-
sition ll 1) )

8 e eonsid r the mnrmal Cartesian plane a)2 whos points 2m: orde

d g ,
and 8 4i) Vtrily that (ii).(13) and (BU—(B4) are satisfied in this model Then show
that ((2) and (ex) hold in this model, hut (c1) tails

8 7 Consider the
,
Cartesian plane ER with 1m

1), but define a did nt notion of ngr

distance function given by the sum ofthe absolute values

d(AJB):a‘ r 17,) + la; 711;).
hide) Somt: people

,
hetore (Exam-

ments using the

all this “taxicab gtomttry“b -

s
that this is another model of the axioms Introdut d so far what does the tirtle wrth

center (a, o) and radius 1 look like in this model?

:r the real Cartesian plane R7, and define a third notion ofcongruen ,e

tor the distant function

8 8 Again consi

for lint gments using the sup of absolute value

d(A.B):supllul
*

bllr l"; n 77A}
show that (Cl), (ex), (ea) are » satisfied in this model what does the circle with

center (a, o) and radius 1 look like in th asev

8 9 Following our gent al principlt , r ~ay that two mode M.M’ otour geometry are
isomorphic lflh’

A

- s a l-to-l mapping 1)) M a M’ of th s of points of M onto

, of M’, written 1))(A):A’, that sends 1i into lines, pr s

, A s B» C in M t:A’ sB' » c' in M’, and p ~ongruenee of

AB ECDme/i'B’; D’inM'

Show that tht: models of Exercise 8 7 and Exert' 8 8 above an: somorphit: to each
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other, but they are not isomorphic to the standard model (Example 8 41) Note To

show that the two mod ls of Ex 7 and Ex 8 8 are isomorphic you do

, rrespond It is only the notion o , ngru-
To show that two models are not iso-

.nt that is true in one model but not

8 10 ’IZK: of a con-

an plane 1RZ With the sual notions of lin
Euclid. n d tan, function d(A B), define a ,w distant

d(A,B) ifth’

Zd(A.B) otherwt

~ CD ifd’(A.B):d’(C.D)
' tied in this model What does a eir t: with

nness Using the

gment AB is either horizontal or Ve ieal,

d’(A.B):{
Define ongruenc - of segments AB
Show that (c1), (c3) a a at
center (0, o) and radius 1 look liltev

8 11 The triangle nieqitttllty is the statement that ifA,B,C a
AC g AB + BC

thret distinct points, then

(a) The triangle inequality always holds for collinear points

(h) The trianglt 'nequality holds for any th

pie 8 4 l) and also in taxicab geometry (Ext:
points in the standard model [Exam-

(t) The trianglt inequality does not hold in the model of filter: se 810 Thustht tri-

triangle int-quality, inglht‘ form of Butlid (1 2o) is a eonsequalzntt oi the full set of
axioms of a Hilhert pla

9 Axioms of congruence for Angles

Recall that we have defined an angle to be the union of two rays originating
at the same point, and not lying on the same line. We postulate an undefined

notion of congruence for angles, written 3, that is sub' t:t to the following three
axioms:

04. Given an angle LBAC and given a

ray [7, there exists a unique lay If,
on a given side of the line DF, such that A C

LBAC 2 LEDF.

C5. For any three angles at./j,;r, if at 2/3 and at g y, then /I g y, Every angle is

congruent to its lf
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cc. (SAs) Given triangles ABC and DEF,

suppose that AB 2 DE and AC 2 DP, A C
and LBAC 2 LEDF, Then the two ttir
angles are congruent, namely, BC 2 EF,

LABC Z LDEF and LACE Z LDFE. D F

Note that Hilbert takes the existence of an angle congruent to a given one
(CA) as an axiom, while Euclid proves this by a ruler and compass construc
tion (123), Since Hilbert does not make use of the compass, we may regard

this axiom as a tool, the “transporter of angles,H that acts as a substitute for the

compass.
As with (C2), we can use (C5) to show that congruence is an equivalence

relation,

Proposition 9.1
Congruence of angles 18 an equivalence relation.

Hoof The proof is identical to the proof of(8.l), using (C5) in place of(Cz).

As in the case of congruence of line segments, we would like to make sense
of Euclid’s common notions in the context of congruence of angles. This propos

sition (9.1) is the analogue of the first common notion, that “things equal to the

same thing are equal to each other." The second common notion, that "equals
added to equals are equal,” becomes problematic in the case of angles, because

in general we cannot define the sum of two angles.

15

_}f LBAC is an angle, and if a ray y
AD lies in the interior of the angle

LBAC, dien we will say that the angle

LBAC is the sum of the angles LDAC
and LEAD,

A

However, if we start widi the two given angles, there may not be an angle

that is their sum in this sense. For one thing, they may add up to a straight line,
or “two right angles” as Euclid says, but this is not an angle. Or the sum may

be greater than 180”, in which case we get an angle, but the two original angles

will not be in the interior of the new angle, So we must be careful how we state
results having to do with sums of angles.

Note that we do not have an axiom ahout congruence of sums of angles

analogous to the axiom (C3) about addition of line segments, That is because we
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can prove the corresponding result for angles. But in order to do so, we will
need (C6).

Hilbett’s use of (co):(SAS) as an axiom is a recognition of the insufliciency

of Euclids proof of that r sult (1,4) using the method of superposition. To Justify
the method of superpo ion by introducing axioms allowing motion offigures in

the plane would be foreign to Euclid’s approach to geometry, so it seems prur
dent to take (C6) as an axiom. However, we will show later (175) that the (SAS)

ntially equivalent to the ex n. of a suflic .ntly large group of

rigid motions ofthe plane. The axiom (cs) i n it is independent

of the other axioms (Exer . 9.3). This axiom is entially what tells us that our

plane is homogeneous: Geometry is the same at ditferent places in the plane.
Now let us show how to deal with sums of angles and inequalities among

angles based on these axioms.

axiom is e

Definition

lf LBAC is an angle, and ifD is a point

on the line AC on the other side of A

from C, then the angles LBAC and

LEAD are supplementary.

Proposition 9.2

If LBAC and LEAD are supplementary angles, and if LB’A’C’ and LB’A’D’ are
supplementary angles, and lfLBAC g LB’A’C’, then also LEAD 2 LB’A’D’.

Hoof Replacing B’, C’,D’ by other

points on the same rays, we may as
sume that AB;A’B’, AC;AC, and
AD;A’D’, Draw the lines BC, BD,

EC, and BB. 5
Fitst we consider the triangles ABC

and A’B’C’. By hypothesis we have

AB;A’B’ and AC;AC and LBAC 2

LB’A’C’. So by (C6) we conclude that

the triangles are congruent. In particu ,
lar, BC;B’C’ and LBCA LB’C’A’. 3

Next we consider the triangles BCD
and B’C’D’, Since AC 2AC’ and AD;

AD, and CrA t D and C’ rA’ *D’, we
conclude from (C3) that CD;C’D’. ,
Using BC;B’C’ and LBCA;LB’C’A’ 1’
proved above, we can apply (c5) again

to see that the triangles BCD and B’C’D’
are congruent. in particular, BD;B’D’
and LBDA;LB’D’A’.
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Now we consider die triangles BDA and B’D’A’. From the previous step we
have BD 2 B’D’ and LBDA 2 LB’D’A’. But by hypothesis we have DA ~D’A’.
So a third applit tion of (C6) shows that the triangles BDA and B’D’A’ are

gruent. In particular, LEAD 2 LB’A’D’, which was to be proved.
on,

Note: We may think of this result as a replacement for (1.13), which says that
the angles made by a ray standing on a line are either right angles or are equal

to two right angles. We cannot use Euclid" statement directly, because in our
terminology, the sum of two right angles is not an angle. However, in applica

tions, Euclid’s (1.13) can be replaced by (9.2), So for example, we have the fol
lowing corollary.

Corollary 9.3

Vertical angles are congruent.

Hoof Recall that verncal angles are der
fined by the opposite rays on the same
two lin -. The vertical angles a and s’
are each supplementary to ,It, and /t is

congruent to itself, so by the proposir

tion, at and at’ are congruent.

Proposition 9.4 (Addition of angles) 2

Suppose LBAC is an angle. and the my AD is in the interior of the angle LBAC.
Suppose LD’A’C’ 2 LDAC, and LB’A’D’ 2 LEAD, and the ra sW

andm
are on opposite 811188 of the line A’D’, Then the raps ATV and

W form an angle.

and LB’A’C’ 2 LBAC, and the tau3
l5 in the intenar of the angle LB’A’C’. For

short, we say ”sums of congruent angles are congruent."

15»an Draw the line BC. Then the ray 3

5must meet the segment 1%, by the
crossbar theorem (7.3). Replacing the ‘9

original D by this intersection point, we

may assume that B.D,C lie on a line

and BrDrC. On the other hand, re A
placing B’.C’,D’ by other points on the
same rays, we may assume that AB 2

AB, and AC 2AC, and AD 2AD. 3 ’
We also have LEAD 2 LB’A’D’ and

LDAC 2 LD’A’C’ by hypothesis. D
By (C6) we conclude that the tlir E/

angles ABAD and AB’A’D’ are con

gruent. In particular, BD2B’D’ and A' C’
LBDA 2 B’D’A’.
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Again by (C6) we conclude that the triangles mac and AD’A’C’ are congrue
ent. In particular, DC 2 [YO and LADC 2 LA’D’C’.

Let E’ be a point on the line B’D’ with B’ at D’ at 15’. Then LA’D’E’ i ppler

mentary to LA’D’B’, which is congruent to LADB. So by (9,2) and tran. ivity of

congrue e we find that LA’D’E’ 2LA’D’C’. Since the angles are on the

same side of the line A’D’, we conclude from the uniquene - part of (c4) that

they are the same angle, In other words, the three points B’,D’, and C’ lie on a
line,

Then from (C3) We conclude that BC ’5 B/C’. Since LABD Z LA’B’D/ by the
first congruence of triangles used in the earlier part of the proof, we c n apply

(cs) once more to the triangles ABC and A’B’c’. The congruence of these trio

angles implies LBAC 2 LB’A’C’ as required, Since B’.D’, and c’ are collinear
and D’A’C’ is an angle, it follows that A’.B’.C’ are not collinear, so BMW is an
angle, Since 8’ and c' are on opposite sides of the line A’D’, it follows that

B’rD’rC’, and so the ray 57 is in the interior of the angle LB’A’C’, as
required,

Next, we will define a notion of inequality for angles analogous to the

inequality for line segments in Section 3,

Definition

Suppose we are given angles LBAC and

LEDF, We say that LBAC is less than 3
LEDF, written LBAC < LEDF, if there
exists a ray D—d in the interior of the

angle LEDF such that LBAC 2 LGDF, A c
In this case we will also say that LEDF
is greater than LBAC.

Proposition 9.5

(a) Ifat 2 1’ and/l 2/I’, then at </j4: 1’ </l’.
(b) Inequality gives an order relation on angles, up to congruence. In other words:

(i) Ifa < [jand/I< y, then at < )r,

(ii) For any two angles a and /t, one and only one of the fallowlng holds: it < /t,

at 2 [3, at > [3,

Roof The proofs of thes , statements are entially the same as the orrespondr
ing statements for line segments (3.4), so we will leave them to die reader.

Definition
A nght angle is an angle it that is cone

gruent to one of its supplementary {5 dangles /3,
_
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Note: in this definition, it does not matter which supplementary angle to a we
consider, because the two supplementary angles to 1 are vertical angles, hence

congruent by (9, ). Two lines are orthogonal if they me at a point and one,
hence all four, of the angles they make is a right angle.

Proposition 9.5

Any two right angles are congruent to each other.

Hoof Suppose that at:LCAB and 1’
LC’A’B’ are right angles. Then they will C
be congruent to their supplementary

angles 1;,/j’, by definition. Suppose a
and a’ are not congruent. Then by (9,5)
either at < 1’ or 1’ < or, Suppose, for (l 9(
example, a < 1’. Then by deiinition of

inequality there s a ray A’E’ in the inn ’9 A ‘3

terior of angle a’ such that 12 LE’AE;
it follows (check!) that the ray A’C’

is in the interior of LE’A’D’, so that

/r’ <LE’A’D’, But LE’A’D’ is suppler
mentary to LE’A’B’, which is congruent

to 1, so by (9.2), LE’A’D’ 2/3, There
fore, /r’ < /r. But 12 /r and a’ 2 /r’, so
we conclude that 1’ <a, which is a b’ A’ 9’

contradiction.

Note: Thus the congruence ofall right angle can be proved and does not need

to be taken as an axiom as Euclid did (Postulate 4), The idea ofoiis proofalready

appears in Proclus,

Example 9.6.1

We will show later that the real Cartesian plane 1R2 provides a model of all the
axioms listed so far. You are probably willing to believe this, but the precise

definition ofwhat we mean by congruence of angles in this model, and the proof

that axioms (c4)2(cs) hold, requires some work. We will postpone this work
until we make a systematic study of Cartesian planes over arbitrary iields, and
then we will show more generally that the Cartesian plane over any ordered

field satisfying a certain algebraic condition gives a model of Hilbert’s axioms

(17.3).
The other most important model of Hllbert’s axioms is the noanuclidean

Poincare model, which We will discuss in Section 39,
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Exercises

91(oiiieren i ot angl-s) Suppose we

are giv n congruent zingl LBAC;

given 3
morotLBAC Then

xists a ray AD in the interior of D
LB’A

4 surzh that LDACELD'A'G'
and LEADELB'A’D’ Thi mlcmtmt
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h

m

9 2 Suppt th myE
is in the int

the ang . LBAG, and the my AZ is in

the int ioi 0t thr: angle LDAC Show
a

,
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A c.

9 ; gments is given by Lht:

s 7) Using tht: usual congruen :(lf angir

on us). show that (c4) and (as) bold in

9 4 C
"D

B is in

the interior of Lht: 2mg
LACD and DA is in tht: interior of the
angle LCDB

A B

10 Hilbert Planes

We have now introduced the minimum has

found our study of geometry,
notions and axioms on wh


