Hilbert's Axioms

CHAPTER

ur purpose in this chapter is to present (with minor
modifications) a set of axioms for geometry proposed
by Hilbert in 1899. These axioms are sufficient by
modern standards of rigor to supply the foundation
for Euclid’s geometry. This will mean also axiomatiz-
ing those arguments where he used intuition, or said
nothing. In particular, the axioms for betweenness,
A based on the work of Pasch in the 1880s, are the most
4 striking innovation in this set of axioms.

Another choice has been to take the SAS theorem as an axiom, and thus
bypass the method of superposition. It is possible to go the other route, and use
motions of figures as a basic building block of geometry. This is what Hadamard
does in his Lecons de Géométrie Elementaire (1901-06), but the result is a step
backward in logical clarity, because he never makes precise exactly what kind of
motions he is allowing. See, however, Section 17 for a fuller discussion of rigid
motions and SAS.

The first benefit of establishing the new system of axioms is, of course, to
vindicate Euclid’s Elements, and thus establish “Euclidean” geometry as a rigo-
rous mathematical discipline. A second benefit is to pose carefully those prob-
lems that have bothered geometers for centuries, such as the question of the
independence of the parallel postulate. Unless one has an exact understanding
of precisely what is assumed and what is not, one risks going around in circles
discussing these questions. In the development of our geometry with the new
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66 2. Hilbert's Axioms

axioms, we will keep the parallel postulate separate and note carefully what
depends on it and what does not.

Besides presenting the axioms, this chapter will also contain the first con-
sequences of the axioms, including different proofs of some of Euclid's early
propositions, until we have established enough so that Euclid's later results can
be deduced without difficulty from the new foundations we have established. In
Sections 10, 11, 12, we show how to recover all the results of Euclid, Books -1V,
except for the theory of area, whose proof is postponed until Chapter 5.

6 Axioms of Incidence

The axioms of incidence deal with points and lines and their intersections. The
points and lines are undefined objects. We simply postulate a set, whose ele-
ments are called points, together with certain subsets, which we call lines. We do
not say what the points are, nor which subsets form lines, but we do require that
these undefined notions obey certain axioms:

I1. For any two distinct points A, B, there exists a unique line [ containing A, B.

I12. Every line contains at least two points.

I3. There exist three noncollinear points (that is, three points not all contained
in a single line).

Definition
A set whose elements are called points, together with a set of subsets called
lines, satisfying the axioms (I1), (12), (13), will be called an incidence geometry.
If a point P belongs to a line I, we will say that P lies on [, or that I passes
through P.

From this modest beginning we cannot expect to get very interesting results,
but just to illustrate the process, let us see how one can prove theorems based
on these axioms.

Proposition 6.1
Two distinct lines can have at most one point in common.

Proof Let l,m be two lines, and suppose they both contain the points A, B, with
A # B. According to axiom (I1), there is a unique line containing both A and B,
so I must be equal to m.

Note that this fact, which was used by Euclid in the proof of (1.4) with the
rather weak excuse that “two lines cannot enclose a space,” follows here from
the uniqueness part of axiom (I1). This should indicate the importance of stat-
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ing explicitly the uniqueness of an object, which was rarely done in Euclid’s
Elements.

Now we have an axiom system, consisting of the undefined sets of points
and lines, and the axioms (11)-(13). A model of that axiom system is a realization
of the undefined terms in some particular context, such that the axioms are sat-
isfied. You could also think of the model as an example of the incidence geometry
defined above.

Example 6.1.1 (The real Cartesian
plane).

Here the set of points is the set R* of
ordered pairs of real numbers. The lines ( by, [,,_)
are those subsets of points P = (x, y) that
satisfy a linear equation ax + by + ¢ =0 (a”a,)
in the variables x, y. To verify that the
axioms hold, for (I1) think of the “two-
point formula” from analytic geometry:
Given two points A = (a;,a;) and B =
(b1, b,). They lie on the line

172 — Ay

Yy—az = (x—a])

171 —
if a; # by; if a; = by, they lie on the line x = a;. To verify (12), take any linear
equation involving y. Substitute two different values of x, and solve for y. This
gives two points on the line. If the equation did not involve y, say x = ¢, take
the points (¢,0) and (c¢,1). To verify (I3), consider the points (0,0),(0,1),
(1,0). One sees easily that there is no linear equation with all three points as
solutions.

Example 6.1.2

One can also make models out of finite A
sets. For example, let the set of points

be a set of three elements {A, B, C}, and

take for lines the subsets {A, B}, {A, C},

and {B,C}. We represent this symboli-

cally by the diagram, where the dots B C
represent the elements of the set, and
the lines drawn on the page show which A\

subsets are to be taken as lines.

This diagram should be understood as purely symbolic, however, and has
nothing to do with a triangle in the ordinary Cartesian plane. The verification of
the axioms in this case is trivial.




68 2. Hilbert's Axioms

Definition
Two distinct lines are parallel it they have no points in common. We also say
that any line is parallel to itself.

The parallel postulate, in its equivalent form given by Playfair, can be stated
as a further axiom about incidence of lines. However, we do not include this
axiom in the definition of incidence geometry. Thus we may speak of an inci-
dence geometry that does or does not satisfy Playfair's axiom.

P. (Playfair’s axiom, also called the parallel axiom). For each point A and each
line [, there is at most one line containing A that is parallel to .

Note that the real Cartesian plane (6.1.1) satisfies (P), as you know, and the
three-point geometry (6.1.2) satisfies (P) vacuously, because there are no distinct
parallel lines at all. Next we give an example of an incidence geometry that does
not satisfy (P).

Example 6.1.3 A
Let our set consist of five points A, B, C,

D, E, and let the lines be all subsets of E

two points. It is easy to see that this ge-
ometry satisfies (11)-(13). However, it
does not satisfy (P), because, for exam-
ple, AB and AC are two distinct lines
through the point A and parallel to the
line DE. D c

Remember that the word parallel simply means that two lines have no points
in common or are equal. It does not say anything about being in the same
direction, or being equidistant from each other, or anything else.

We say that two models of an axiom system are isomorphic if there exists a
1-to-1 correspondence between their sets of points in such a way that a subset
of the first set is a line if and only if the corresponding subset of the second
set is a line. For short, we say ‘“the correspondence takes lines into lines.”
So for example, we see that (6.1.1), (6.1.2), and (6.1.3) are nonisomorphic models
of incidence geometry, for the simple reason that their sets of points have dif-
ferent cardinality: There are no 1-to-1 correspondences between any of these
sets.

On the other hand, we can show that any model of incidence geometry
having just three points is isomorphic to the model given in (6.1.2). Indeed, let
{1,2,3} be a geometry of three points. By (13), there must be three noncollinear
points. Since there are only three points here, we conclude that there is no
line containing all three. But by (I1), each subset of two points must be con-
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tained in a line. Thus {1,2},{2,3}, and {1, 3} are lines. Now by (12), every line
contains at least two points, so these are all the possible lines. In other words,
the lines are just all subsets of two elements. Since (6.1.2) also has this property,
any 1-to-1 correspondence between the sets {A, B,C} and {1,2,3} will give an
isomorphism.

By the way, this proof shows that the isomorphism just found is not unique.
There are six choices. This leads to the notion of automorphism.

Definition

An automorphism of an incidence geometry is an isomorphism of the geometry
with itself, that is, it is a 1-to-1 mapping of the set of points onto itself, preserving
lines.

Note that the composition of two automorphisms is an automorphism, and
so is the inverse of an automorphism. Thus the set of automorphisms forms a
group. In the example above, any 1-to-1 mapping of the set of three elements
onto itself gives an automorphism of the geometry, so we see that the group of
automorphisms of this geometry is the symmetric group on three letters, S;.

An important question about a set of axioms is whether the axioms are inde-
pendent of each other. That is to say, that no one of them can be proved as a
consequence of the others. For if one were a consequence of the others, then we
would not need that one as an axiom. To try to prove directly that axiom A is
not a consequence of axioms B,C, D, ... is usually futile. So instead, we search
for a model in which axioms B, C, D,... hold but axiom A does not hold. If such
a model exists, then there can be no proof of A as a consequence of B,C, D, ...,
so we conclude that A is independent of the others. This process must be re-
peated with each individual axiom, to show that each one is independent of
all the others. With a long list of axioms this can become tedious and difficult,
so we will forgo the process with our full list of axioms. But as an illustra-
tion of what is involved, let us show that the axioms (11), (12), (13), and (P) are
independent.

Proposition 6.2
The axioms (11), (12), (I13), (P) are independent of each other.

Proof We have already seen that (6.1.3) is a model satisfying (I1), (12), (13), and
not (P). Hence (P) is independent of the others.

For a model satisfying (11), (12), (P), and not (13), take a set of two points and
the one line containing both of them.
Note that (P) is satisfied trivially, be- A B
cause there are no points not on the . *
line L.




70 2. Hilbert’s Axioms

For a model satisfying (11), (13), (P), A

and not (12), take a set of three points

A,B,C, and for lines take the subsets

{A,B},{A,C},{B,C}, and {A}. The ex-

istence of the one-point line {A} con- B c
tradicts (12). Yet (P) is still fulfilled, 7 A\
because that one-point line is then the

unique line through A parallel to {B, C}.

For a model satisfying (12), (13), (P) A,
and not (I1), just take a set of three
points and no lines at all. U o C

While we are discussing axiom systems, there are a few more concepts we
should mention. An axiom system is consistent if it will never lead to a contra-
diction. That is to say, if it is not possible to prove from the axioms a statement
A and also to prove its negation not A. This is obviously a highly desirable
property of a system of axioms. We do not want to waste our time proving theo-
rems from a system of axioms that one day may lead to a contradiction. Un-
fortunately, however, the logician Kurt Godel has proved that for any reasonably
rich set of axioms, it will be impossible to prove the consistency of that system.
So we will have to settle for something less, which is relative consistency. As soon
as you can find a model for your axiom system within some other mathematical
theory T, it follows that if T is consistent, then also your system of axioms is
consistent. For any contradiction that might follow from your axioms would
then also appear in the theory T, contradicting its consistency. So for example,
if you believe in the consistency of the theory of real numbers, then you must
accept the consistency of Hilbert's axiom system for geometry, because all of his
axioms will hold in the real Cartesian plane. That is the best we can do about the
question of consistency.

Another question about a system of axioms is whether it is categorical. This
means, does it describe a unique mathematical object? Or in other words, is
there a unique model (up to isomorphism) for the system of axioms? In fact, it
will turn out that if we take the entire list of Hilbert's axioms, including the par-
allel axiom (P) and Dedekind's axiom (D), the system will be categorical, and the
unique model will be the real Cartesian plane. (We will prove this result later
(21.3).) Also, if we take all of Hilbert's axioms, together with (D) and the hyper-
bolic axiom (L) (see Section 40), we will have another categorical system, whose
unique model is the non-Euclidean Poincare model over the real numbers (Ex-
ercise 43.2).

However, from the point of view of this book, it is more interesting to have
an axiom system that is not categorical, and then to investigate the different
possible geometries that can arise. Therefore, we will almost never assume
Dedekind's axiom (D), and we will only sometimes assume Archimedes' axiom
(A), or the parallel axiom (P).
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Finally, one can ask whether the axiom system is complete, which means, can
every statement that is true in every model of the axiom system be proved as a
consequence of the axioms? Again, Godel has shown that any axiomatic system
of reasonable richness cannot be complete. For a fuller discussion of these
questions, see Chapter 51 of Kline (1972) on the foundations of mathematics.

Exercises

6.1

6.2

6.3

6.4

6.5

Describe all possible incidence geometries on a set of four points, up to iso-
morphism. Which ones satisty (P)?

The Cartesian plane over a field F. Let F be any field. Take the set F? of ordered
pairs of elements of the field F to be the set of points. Define lines to be those subsets
defined by linear equations, as in Example 6.1.1. Verify that the axioms (11), (12),
(13), and (P) hold in this model. (See Section 14 for more about Cartesian planes
over fields.)

A projective plane is a set of points and subsets called lines that satisty the following
four axioms:

P1. Any two distinct points lie on a unique line.

P2. Any two lines meet in at least one point.

P3. Every line contains at least three points.

P4. There exist three noncollinear points.

Note that these axioms imply (11)-(13), so that any projective plane is also an inci-
dence geometry. Show the following:

(a) Every projective plane has at least seven points, and there exists a model of a
projective plane having exactly seven points.

(b) The projective plane of seven points is unique up to isomorphism.

(c) The axioms (P1), (P2), (P3), (P4) are independent.

Let Fbe a field, and let V = F® be a three-dimensional vector space over F. Let I1 be
the set of 1-dimensional subspaces of V. We will call the elements of Il “points.” So a
“point” is a 1-dimensional subspace P < V. If W < V is a 2-dimensional subspace of
V, then the set of all “points” contained in W will be called a “line.” Show that the set
I1 of “points” and the subsets of “lines” forms a projective plane ( Exercise 6.3).

An affine plane is a set of points and subsets called lines satistying (11), (12), (I3), and
the following stronger form of Playfair's axiom.

P’. For every line [, and every point A, there exists a unique line m containing A
and parallel to [.

(a) Show that any two lines in an affine plane have the same number of points (i.e.,
there exists a 1-to-1 correspondence between the points of the two lines).
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6.6

6.7

6.8

6.9
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(b) If an affine plane has a line with exactly n points, then the total number of
2

points in the plane is n”.
(c) If Fis any field, show that the Cartesian plane over F (Exercise 6.2) is a model of
an affine plane.

(d) Show that there exist affine planes with 4, 9, 16, or 25 points. (The nonexistence
of an affine plane with 36 points is a difficult result of Euler.)

In an incidence geometry, consider the relationship of parallelism, “l is parallel to
m,” on the set of lines.

(a) Give an example to show that this need not be an equivalence relation.
(b) If we assume the parallel axiom (P), then parallelism is an equivalence relation.
(

¢) Conversely, if parallelism is an equivalence relation in a given incidence geom-
etry, then (P) must hold in that geometry.

Let Il be an affine plane (Exercise 6.5). A pencil of parallel lines is the set of all the
lines parallel to a given line (including that line itself). We call each pencil of paral-
lel lines an “ideal point,” or a “point at infinity,"” and we say that an ideal point “lies
on” each of the lines in the pencil. Now let 11’ be the enlarged set consisting of [l
together with all these new ideal points. A line of 11" will be the subset consisting of
a line of Il plus its unique ideal point, or a new line, called the “line at infinity,"”
consisting of all the ideal points.

(a) Show that this new set 1" with subsets of lines as just defined forms a projective
plane (Exercise 6.3).

(b) If Il is the Cartesian plane over a field F (Exercise 6.2), show that the associated
projective plane Il” is isomorphic to the projective plane constructed in Exercise
6.4.

If there are n + 1 points on one line in a projective plane I, then the total number
of points in Il is n* + n+ 1.

Kirkman’s schoolgirl problem (1850) is as follows: In a certain school there are 15
girls. It is desired to make a seven-day schedule such that each day the girls can
walk in the garden in five groups of three, in such a way that each girl will be in the
same group with each other girl just once in the week. How should the groups be
formed each day?

To make this into a geometry problem, think of the girls as points, think of the
groups of three as lines, and think of each day as describing a set of five lines, which
we call a pencil. Now consider a Kirkman geometry: a set, whose elements we call
points, together with certain subsets we call lines, and certain sets of lines we call
pencils, satistying the following axioms:

K1. Two distinct points lie on a unique line.
K2. All lines contain the same number of points.
K3. There exist three noncollinear points.

K4. Each line is contained in a unique pencil.
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K5. Each pencil consists of a set of parallel lines whose union is the whole set of
points.

(a) Show that any affine plane gives a Kirkman geometry where we take the pencils
to be the set of all lines parallel to a given line. (Hence by Exercise 6.5 there exist
Kirkman geometries with 4, 9, 16, 25 points.)

(b) Show that any Kirkman geometry with 15 points gives a solution of the original
schoolgirl problem.

(¢) Find a solution for the original problem. (There are many inequivalent solutions
to this problem.)

6.10 In a finite incidence geometry, the number of lines is greater than or equal to the
number of points.

7 Axioms of Betweenness

In this section we present axioms to make precise the notions of betweenness
(when one point is in between two others), on which is based the notion of
sidedness (when a point is on one side of a line or the other), the concepts of
inside and outside, and also the concepts of order, when one segment or angle is
bigger than another. We have seen the importance of these concepts in reading
Euclid's geometry, and we have also seen the dangers of using these concepts
intuitively, without making their meaning precise. So these axioms form an
important part of our new foundations for geometry. At the same time, these
axioms and their consequences may seem difficult to understand for many
readers, not because the mathematical concepts are technically difficult, but
because the notions of order and separation are so deeply ingrained in our daily
experience of life that it is difficult to let go of our intuitions and replace them
with axioms. It is an exercise in forgetting what we already know from our inner
nature, and then reconstituting it with an open mind as an external logical
structure.

Throughout this section we presuppose axioms (I1)-(I3) of an incidence
geometry. The geometrical notions of betweenness, separation, sidedness, and
order will all be based on a single undefined relation, subject to four axioms. We
postulate a relation between sets of three points A, B, C, called “B is between A
and C.” This relation is subject to the following axioms.

Bl. If B is between A and C, (written A = B« C), then A, B, C are three distinct
points on a line, and also C = B+ A.

B2. For any two distinct points A, B, there exists a point C such that A # B C.

B3. Given three distinct points on a line, one and only one of them is between
the other two.
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B4. (Pasch). Let A,B,C be three non- A
collinear points, and let [ be a line i
not containing any of A,B,C. If [ g
contains a point D lying between
A and B, then it must also contain a c

either a point lying between A and
C or a point lying between B and C,
but not both.

Definition

If A and B are distinct points, we define the line segment AB to be the set con-
sisting of the points A, B and all points lying between A and B. We define a tri-
angle to be the union of the three line segments AB,BC, and AC whenever
A, B, C are three noncollinear points. The points A, B, C are the vertices of the
triangle, and the segments AB, BC, AC are the sides of the triangle.

Note: The segments AB and BA are the same sets, because of axiom (B1). The
endpoints A, B of the segment AB are uniquely determined by the segment AB
(Exercise 7.2). The vertices A, B,C, and the sides AB,AC, BC of a triangle ABC
are uniquely determined by the triangle (Exercise 7.3).

With this terminology, we can rephrase (B4) as follows: If a line [ that does
not contain any of the vertices A, B, C of a triangle meets one side AB, then it
must meet one of the other sides AC or BC, but not both.

From these axioms together with the axioms of incidence (11)-(13) we will
deduce results about the separation of the plane by a line, and the separation of
a line by a point.

Proposition 7.1 (Plane separation)
Let 1 be any line. Then the set of points not lying on | can be divided into two non-
empty subsets Sy, S, with the following properties:

(a) Two points A, B not on 1 belong to the %
same set (Sy or ) if and only if the A
segment AB does not intersect .
(b) Two points A, C not on 1 belong to the
opposite sets (one in Sy, the other in
S,) if and only if the segment AC in- £
tersects | in a point.

We will refer to the sets Sy, S, as the
two sides of 1, and we will say “A and B
are on the same side of I, or “A and C
are on opposite sides of 1.”! C
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Proof We start by defining a relation ~ among points not on . We will say
A ~ B if either A = B or if the segment AB does not meet . Our first step is to
show that ~ is an equivalence relation. Clearly, A ~ A by definition, and A ~ B
implies B ~ A because the set AB does not depend on the order in which we
write A and B. The nontrivial step is to show the relation is transitive: If A ~ B
and B ~ C, we must show A ~ C.

Case 1 Suppose A,B,C are not col- A

linear. Then we consider the triangle

ABC. Since A ~ B, | does not meet AB. B c
Since B ~ C, | does not meet BC. Now

by Pasch's axiom (B4), it follows that [ £
does not meet AC. Hence A ~ C.

Case 2 Suppose A, B, C lie on a line m.
Since A, B, C do not lie on [, the line m is
different from I. Therefore [ and m can
meet in at most one point (6.1). But by
(I2) every line has at least two points.
Therefore, there exists a point D on [,D
not lying on m. -~

Now apply axiom (B2) to find a point E such that D= A = E. Then D,AE
are collinear (B1); hence E is not on [, since A is not on [, and the line DAE
already meets [ at the point D. Furthermore, the segment AE cannot meet I. For
if it did, the intersection point would be the unique point in which the line AE
meets [, namely D. In that case D would be between A and E. But we con-
structed E so that D* A * E, so by (B3), D cannot lie between A and E. Thus
AENI= &, so A ~ E. Note also that E does not lie on the line m, because if E
were on m, then the line AE would be equal to m, so D would lie on m, contrary
to our choice of D. Therefore, A,B,E are three noncollinear points. Then by
Case 1 proved above, from A ~E and A ~ B we conclude B ~ E. By Case 1
again, from B ~ E and B ~ C we conclude C ~ E. Applying Case 1 a third time to
the three noncollinear points A, C, E, from A ~ E and C ~ E we conclude A ~ C
as required.

Thus we have proved that ~ is an equivalence relation. An equivalence
relation on a set divides that set into a disjoint union of equivalence classes,
and these equivalence classes will satisfy property (a) by definition. To complete
the proof it will be sufficient to show that there are exactly two equivalence
classes Sy, S, for the relation ~. Then to say that AC meets I, which is equivalent
to A + C, will be the same as saying that A, C belong to the opposite sets.

By (I3) there exists a point not on I, so there is at least one equivalence class
S;. Given A € Sy, let D be any point on [, and choose by (B2) a point C such that
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A#x D=+ C. Then A and C do not satisfy ~, so there must be at least two equiva-
lence classes S, and S,.

The last step is to show that there are at most two equivalence classes. To do
this, we will show that if A £ C and B + C, then A ~ B.

Case 1 1If A,B,C are not collinear, we A

consider the triangle ABC. From A + C : /
we conclude that AC meets [. From

B+ C we conclude that BC meets L

Now by Pasch's axiom (B4) it follows C
that AB does not meet I. So A ~B as

required.

Case 2 Suppose A, B, C lie on a line m. €
As in Case 2 of the first part of the proof 8
above, choose a point D on [, not on m, A
and use (B2) to get a point E with £
D+ A«+E. Then A ~E as we showed / D
above. c

Now, A +# C by hypothesis, and A ~ E, so we conclude that C + E, since ~ is
an equivalence relation (if C ~ E, then A ~ C by transitivity: contradiction).
Looking at the three noncollinear points B,C,E, from E £ C and B + C we
conclude using Case 1 that B ~ E. But also A ~ E, so by transitivity, A ~ B as
required.

Proposition 7.2 (Line separation)
Let A be a point on a line . Then the set of points of | not equal to A can be divided
into two nonempty subsets Sy, Sy, the two sides of A on 1, such that

(a) B, C are on the same side of A if and

only if A is not in the segment BC; D A B C
(b) B, D are on opposite sides of A if . . . . 2
and only if A belongs to the segment
BD.
m

Proof Given the line [ and a point A on
I, we know from (I3) that there exists a
point E not on . Let m be the line con-
taining A and E. Apply (7.1) to the line
m. If m has two sides 8], 8/, we define §, A XL
and S, to be the intersections of S| and

8, with I. Then properties (a) and (b)

follow immediately from the previous

proposition.




7. Axioms of Betweenness 77

The only mildly nontrivial part is to show that §; and S, are nonempty. By
(I2), there is a point B on [ different from A. And by (B2) there exists a point D
such that B * A * D. Then D will be on the opposite side of A from B, and will lie

on [, so both sides are nonempty.

Now that we have some basic results on betweenness, we can define rays

and angles.

Definition

Given two distinct points A, B, the ray
AB is the set consisting of A, plus all
points on the line AB that are on the
same side of A as B. The point A is the
origin, or vertex, of the ray. An angle is
the union of two rays AB and AC
originating at the same point, its vertex,
and not lying on the same line. (Thus
there is no “zero angle,” and there is no
“straight angle” (180°).) Note that the
vertex of a ray or angle is uniquely de-
termined by the ray or angle (proof
similar to Exercises 7.2, 7.3).

The inside (or interior) of an angle
/.BAC consists of all points D such that
D and C are on the same side of the line
AB, and D and B are on the same side of
the line AC. If ABC is a triangle, the in-
side (or interior) of the triangle ABC is
the set of points that are simultaneously
in the insides of the three angles
/[ BAC,/ ABC,/ ACB.

Proposition 7.3 (Crossbar theorem)
Let [ BAC be an angle, and let D be a
point in, the interior of the angle. Then the
ray AD must meet the segment BC.

-

A \\\\\\\\\ \

W

c

Proof This is similar to Pasch’'s axiom (B4), except that we must consider a
line AD that passes through one vertex of the triangle ABC. We will prove it
with Pasch’s axiom and several applications of the plane separation theorem

(7.1).
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Let us label the lines AB=1, AC =
m, AD = n. Let E be a point on m such
that E x A * C (B2). We will apply Pasch’s
axiom (B4) to the triangle BCE and the
line n. By construction n meets the side
CE at A. Also, n cannot contain B, be-
cause it meets the line [ at A. We will A c
show that n does not meet the segment 4
BE, so as to conclude by (B4) that it
must meet the segment BC.

So we consider the segment BE. This segment meets the line [ only at B, so
all points of the segment, except B, are on the same side of I. By construction, C
is on the opposite side of | from E, so by (7.1) all points of BE, except B, are on
the opposite side of [ from C. On the other hand, since D is in the interior of the
angle / BAC, all the points of the ray AD except A, are on the same side of [ as
C. Thus the segment BE does not meet the ray AD.

A similar reasoning using the line m shows that all points of the segment BE,
except E, he on the same side of m as B, while the points of the ray of n, opposite
the ray AD lie on the other side of m. Hence the segment BE cannot meet the
opposite ray to AD. Together with the previous step, this shows that the seg-
ment BE does not meet the line n. We conclude by (B4) that n meets the seg-
ment BC in a point F.

It remains only to show that F' is on the ray AD of the line n. Indeed, B and
F are on the same side of m, and also B and D are on the same side of m, so (7.1)
D and F are on the same side of m, and so Dﬂd F are on the same side of A on
the line n. In other words, F lies on the ray AD.

Example 7.3.1
We will show that the real Cartesian plane (6.1.1), with the “usual” notion of
betweenness, provides a model for the axioms (B1)-(B4).

First, we must make precise what we mean by the usual notion of between-
ness. For three distinct real numbers a,b,c € R, let us define a * b * ¢ if either
a<b<c or c<b<a Then it is easy to see that this defines a notion of
betweenness on the real line R that satisfies (B1), (B2), and (B3).

If A= (ay,a;), B= (b1,b;), and C = (c;,c;) are three points in R? let us
define A * B* C to mean that A,B,C are three distinct points on a line, and
that either a, = by = ¢; or ay * by * ¢, or both. In fact, if either the x- or the y-
coordinates satisty this betweenness condition, and if the line is neither hori-
zontal nor vertical, then the other coordinates will also satisfy it, because the
points lie on a line, and linear operations (addition, multiplication) of real num-
bers either preserve or reverse inequalities. Thus linear operations preserve be-
tweenness. So we can verify easily that this notion of betweenness in R? sat-
isfies (B1), (B2), and (B3).
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For (B4), let I be a line, and let A, B, C be three noncollinear points not on [.

The line [ is defined by some linear equation ax 4+ by 4+ ¢ = 0. Let ¢ : R> — R be
the linear function defined by ¢(x, y) = ax + by + ¢. Since ¢ is a linear function,
¢ will preserve betweenness. For example, if | meets the segment AB, then 0 will
lie between @(A) and ¢(B). In other words, one of ¢p(A), ¢(B) will be positive and
the other negative. Suppose ¢(A) > 0 and ¢(B) < 0. Consider ¢(C). If ¢(C) > 0,
then [ will meet BC but not AC. If ¢(C) < 0, then [ will meet AC but not BC. This
proves (B4).

Exercises

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Using the axioms of incidence and betweenness and the line separation property,
show that sets of four points A, B,C, D on a line behave as we expect them to with
respect to betweenness. Namely, show that

(a) A*xBxCand Bx C+ D imply A*Bx D and A C* D.
(b) A*BxDand BxC+Dimply A*Bx*Cand A * C* D.

Given a segment AB, show that there do not exist points C,D e AB such that
C = A = D. Hence show that the endpoints A, B of the segment are uniquely deter-
mined by the segment.

Given a triangle ABC, show that the sides AB, AC, and BC and the vertices A, B, C
are uniquely determined by the triangle. Hint: Consider the different ways in which
a line can intersect the triangle.

Using (I1)-(13) and (B1)-(B4) and their consequences, show that every line has
infinitely many distinct points.

Show that the line separation property (Proposition 7.2) is not a consequence of
(B1), (B2), (B3), by constructing a model of betweenness for the set of points on
a line, which satisfies (B1), (B2), (B3) but has only finitely many points. (Then by
Exercise 7.4, line separation must fail in this model.) For example, in the ring
{0,1,2,3,4} of integers (mod 5), define a b xc if b=} (a+c).

Prove directly from the axioms (11)-(13) and (B1)-(B4) that for any two distinct
points A, B, there exists a point C with A = C = B. (Hint: Use (B2) and (B4) to con-
struct a line that will be forced to meet the segment AB but does not contain A or B.)

Be careful not to assume without proof statements that may appear obvious. For
example, prove the following:

(a) Let A, B, C be three points on a line A [ B
with C in between A and B. Then show . - ’
that ACU CB = ABand AC N CB = {C}.

P e T

(b) Suppose we are given two distinct
points A, B on a line . Show that AB U
BA =land AB N BA = AB. B

>
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7.8 Assume A x=B*xC on one line, and R
A * D E on another line. Show that the
segment BE must meet the segment CD
at a point M.

7.9 Show that the interior of a triangle is nonempty.

7.10 Suppose that a line [ contains a point D
that is in the inside of a triangle ABC. !
Then show that the line ! must meet (at D
least) one of the sides of the triangle.

A C

7.11 A set U of points in the plane is a convex set if whenever A, B are distinct points in U,
then the segment AB is entirely contained in U. Show that the inside of a triangle is
a convex set.

7.12 A subset W of the plane is segment-connected if given any two points A, B € W, there
is a finite sequence of points A = A}, A,,..., A, = B such that for each i=1,2,...,
n — 1, the segment A;A;;; is entirely contained within W.

If ABC is a triangle, show that the exterior of the triangle, that is, the set of all points of
the plane lying neither on the triangle nor in its interior, is a segment-connected set.

7.13 Let A, B,C, D be four points, no three collinear, and assume that the segments AB,
BC, CD, DA have no intersections except at their endpoints. Then the union of these
four segments is a simple closed quadrilateral. The segments AC and BD are the diag-
onals of the quadrilateral. There are two cases to consider.

B

Case 1 AC and BD meet at a point M.

In this case, show that for each pair

of consecutive vertices (e.g., A, B), the
remaining two vertices (C,D) are on

the same side of the line AB. Define A
the interior of the quadrilateral to be

the set of points X such that for each '
side (e.g., AB), X is on the same side of

the line AB as the remaining vertices

(C,D). Show that the interior is a con-

vex set. 0
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Case 2 AC and BD do not meet. In
this case, show that one of the diago-
nals (AC in the picture) has the prop-
erty that the other two vertices B, D are
on the same side of the line AC, while
the other diagonal BD has the property
that A and C are on the opposite sides
of the line BD. Define the interior of the
quadrilateral to be the union of the
interiors of the triangles ABD and CDB
plus the interior of the segment BD.
Show in this case that the interior is
a segment-connected set, but is not
convex.

(For a generalization to n-sided fig-
ures, see Exercise 22.11.)

7.14 (Linear ordering) Given a finite set of distinct points on a line, it is possible to label
them A, Ay, ..., Ay in such a way that A; * A; x Aj if and only if either i < j < k or
k<j<i

7.15 Suppose that lines a,b,c through the
vertices A,B,C of a triangle meet at

three points inside the triangle. Label B
them

X=a-c,

Y=a-b,

Z=bhb-c

Show that one of the two following
arrangements must occur:

(i) A*X*xYand Bx YxZand C* Zx X A 0- C
(shown in diagram), or ¢

(if) AxY*Xand B=Zx Yand Cx X = Z.

8 Axioms of Congruence for Line Segments

To the earlier undefined notions of point, line, and betweenness, and to the
earlier axioms (I11)-(13), (B1)-(B4), we now add an undefined notion of congru-
ence for line segments, and further axioms (C1)-(C3) regarding this notion. This
congruence is what Euclid called equality of segments. We postulate an un-
defined notion of congruence, which is a relation between two line segments AB
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and CD, written AB = CD. For simplicity we will drop the bars over AB in the
notation for a line segment, so long as no confusion can result. This undefined
notion is subject to the following three axioms

C1. Given a line segment AB, and given A &
a ray r originating at a point C, there /

exists a unique point D on the ray r e
D

such that AB = CD. '\@\

C2.If AB = CD and AB = EF, then CD = EF. Every line segment is congruent to
itself.

C3. (Addition). Given three points A, B, C
C on a line satisfying A *B=C, and B

three further points D,EF on a line A D
satisfying D= Ex* F, if AB=DE and '\E\‘F
BC = EF, then AC = DF.

Let us observe how these axioms are similar to Euclid's postulates and how
they are different. First of all, while Euclid phrases some of his postulates in
terms of constructions (“to draw a line through any two given points,” and “to
draw a circle with any given center and radius”), Hilbert's axioms are existen-
tial. (I1) says for any two distinct points there exists a unique line containing
them. And here, in axiom (C1), it is the existence of the point D (corresponding
to Euclid's construction (1.3)) that is taken as an axiom. Hilbert does not make
use of ruler and compass constructions. In their place he puts the axiom (C1) of
the existence of line segments and later (C4) the existence of angles. If you like,
you can think of (C1) and (C4) as being tools, a “transporter of segments” and a
“transporter of angles,” and consider some of Hilbert's theorems as construc-
tions with these tools.

The second congruence axiom (C2) corresponds to Euclid’'s common notion
that “things equal to the same thing are equal to each other.” This is one part of
the modern notion of an equivalence relation, so to be comfortable in using
congruence, let us show that it is indeed an equivalence relation.

Proposition 8.1
Congruence is an equivalence relation on the set of line segments.

Proof To be an equivalence relation, congruence must satisfy three properties.

(1) Reflexivity: Every segment is congruent to itself. This is explicitly stated in
(C2). And by the way, this corresponds to Euclid’s fourth common notion that
“things which coincide with each other are equal to each other.”
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83




84 2. Hilbert's Axioms

(2) Symmetry: If AB = CD, then CD = AB. This is a consequence of (C2):
Given AB = CD, and writing AB = AB by reflexivity, we conclude from (C2) that
CD = AB.

(3) Transitivity: If AB = CD and CD = EF, then AB = EF. This follows by first
using symmetry to show CD = AB, and then applying (C2). Notice that Hilbert's
formulation of (C2) was a clever way of including symmetry and transitivity in a
single statement.

The third axiom (C3) is the counterpart of Euclid's second common notion,
that “equals added to equals are equal.” Let us amplify this by making a precise
definition of the sum of two segments, and then showing that sums of congruent
segments are congruent.

Definition
Let AB and CD be two given segments.

Choose an ordering A,B of the end- A ? € v
points of AB. Let r be the ray on the line » -+ - >
I = AB consisting of B and all the points

of [ on the other side of B from A. Let E N D

be the unique point on the ray » (whose —

existence is given by (C1)) such that

CD = BE.

We then define the segment AE to be the sum of the segments AB and CD,
depending on the order A, B, and we will write AE = AB + CD.

Proposition 8.2 (Congruence of sums)
Suppose we are given segments AB = A'B’ and CD = C'D'. Then AB+ CD =
A'B'+C'D'".

Proof Let E’ be the point on the line A’B” defining the sum A'E' = A'B' + C'D".
Then A =B« E by construction of the sum AB+ CD, because E is on the ray
from B opposite A. Similarly, A’ B’ « E'. We have AB = A’B' by hypothesis.
Furthermore, we have CD = C’D’ by hypothesis, and CD =~ BE and C'D' =
B'E' by construction of E and E’. From (8.1) we know that congruence is an
equivalence relation, so BE = B'E'. Now by (C3) it follows that AE = A’E’ as
required.

Note: Since the segment AB is equal to the segment BA, it follows in particular
that the sum of two segments is independent of the order A, B chosen, up to
congruence. Thus addition is well-defined on congruence equivalence classes of
line segments. So we can speak of addition of line segments or congruent seg-
ments without any danger (cf. also Exercise 8.1, which shows that addition of
line segments is associative and commutative, up to congruence). Later (Section
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19) we will also define multiplication of segments and so create a field of seg-
ment arithmetic.

Euclid’'s third common notion is that “equals subtracted from equals are
equal.” Bearing in mind that subtraction does not always make sense, we can
interpret this common notion as follows.

Proposition 8.3
Given three points A,B,C on a line such

that A « B+ C, and given points E,F on a A
ray originating from a point D, suppose

that AB = DE and AC = DF. Then E will D £

be between D and F, and BC = EF. (We \\_F\)
regard BC as the difference of AC and

AB)

Proof Let F’ be the unique point on the ray originating at E, opposite to D, such
that BC = EF'. Then from AB =~ DE and BC = EF' we conclude by (C3) that
AC = DF'. But F and F’ are on the same ray from D (check!) and also AC = DF,
so by (C2) and the uniqueness part of (C1), we conclude that F = F'. It follows
that D = E = F and BC = EF, as required.

Note the role played by the uniqueness part of (C1) in the above proof. We
can regard this uniqueness as corresponding to Euclid's fiftth common notion,
‘“the whole is greater than the part.” Indeed, this statement could be interpreted
as meaning, if A * B* C, then AB cannot be congruent to AC. And indeed, this
follows from (C1), because B and C are on the same ray from A, and if AB = AC,
then B and C would have to be equal by (C1).

So we see that Euclid’s common notions, at least in the case of congruence of
line segments, can be deduced as consequences of the new axioms (C1)-(C3).
Another notion used by Euclid without definition is the notion of inequality of
line segments. Let us see how we can define the notions of greater and lesser
also using our axioms.

Definition B
Let AB and CD be given line segments. f\//-'
We will say that AB is less than CD,

written AB < CD, if there exists a point

E in between C and D such that AB =~ TTTT——
CE. In this case we say also that CD is

greater than AB, written CD > AB.
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In the next proposition, we will see that this notion of less than is compatible
with congruence, and gives an order relation on congruence equivalence classes
of line segments.

Proposition 8.4

(a) Given line segments AB =~ A'B" and CD = C'D’, then AB < CD if and only if
A'B' < C'D'".

(b) The relation < gives an order rvelation on line segments up to congruence, in
the following sense:

(i) If AB < CD, and CD < EF, then AB < EF.
(i) Given two line segments AB, CD, one and only one of the three following condi-
tions holds: AB < CD, AB = CD, AB > CD.

Proof (a) Given AB=~ A'B’ and CD =

C'D’, suppose that AB < CD. Then A B

there is a point E such that AB = CE /

and C+E=D. Let E' be the unique C £ )
point on the ray C'D’ such that CE = T

C'E'. 1t follows from (8.3) that C" = E' « A’ p

D'. Furthermore, by transitivity of con- \P

gruence, A'B' =~ C'E’, so A'B' < C'D’ as /D’
required. The “if and only if” statement £
follows by applying the same argument ¢
starting with A’'B’ < C'D".

(b) (i) Suppose we are given AB <
CD and CD < EF. Then by definition,
there is a point X € CD such that AB =
CX, and there is a point Y € EF such
that CD = EY. Let Ze EF be such that C X D
CX = EZ. Then by (8.3) we have E* Z*
Y. It follows that E x Z = F (Exercise 7.1)
and that AB >~ EZ. Hence AB < EF as *
required.

(ii) Given line segments AB and CD,

M
™
~<
T

let E be the unique point on the ray CD B

for which AB = CE. Then either D = E f'_,,’-*

or CxExD or Cx*D=E. We cannot

have D C = E because D and E are on C

the same side of C. These conditions are '-h——H_*P
equivalent to AB = CD, or AB < CD, or

AB > CD, respectively, and one and

only one of them must hold.
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Example 8.4.1
Let us define congruence for line seg- B = (%, loz.)
ments in the real Cartesian plane R?, so ’
that it becomes a model for the axioms
(I1)-(13), (B1)—(B4), and (C1)-(C3) that
we have introduced so far. We have
already seen how to define lines and
betweenness (7.3.1). Given two points A = (&)
A = (ay,a;) and B = (b, b;), we define
the distance d(A, B) by

d(A.B) = \/(a] - bl)z + (Clz - bz)z.

This is sometimes called the Euclidean distance or the Euclidean metric on R*.
Note that d(A,B) = 0, and d(A,B) = 0 only it A = B.

Now we can give an interpretation of the undefined notion of congruence in
this model by defining AB = CD if d(A, B) = d(C, D). Let us verify that the axioms
(C1), (C2), (C3) are satisfied.

For (C1), we suppose that we are
given a segment AB, and let d = d(A, B).
We also suppose that we are given a
point C = (¢1,¢;) and a ray emanat- D
ing from C. For simplicity we will
assume that the ray has slope m >0 A
and that it is going in the direction of "
increasing x-coordinate (we leave the A
other cases to the reader). Then any C ={c,a)
point D on this ray has coordinates D = !
(¢1 + h,c; + mh) for some h>0. The
corresponding distance is

d(C,D) = hv'1 4+ m?.

To find a point D with AB = CD is then equivalent to solving the equation
(in a variable h > 0)

hv1 4+ m? =d,

where m and d > 0 are given. Clearly, there is a unique solution he R, h > 0,
for given d, m. This proves (C1).

The second axiom (C2) is trivial from the definition of congruence using a
distance function.
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To prove (C3), it will be sufficient to

prove that the distance function is addi- C
tive for points in a line: If A % B C, B
then

d(A,B) 4+ d(B,C) =d(A,C). A

Suppose the line is y=mx+b, and _~-]
A = (ay,a;) is the point with smallest
x-coordinate.

Then there are h,k > 0 such that

B = (a) + h,a; + mh),
C=(ay +h+k,a;+mh+k)).

In this case

d(A,B) = hV'1 + m?,
d(B,C) = kv'1 +m?,
d(A,C) = (h+ k)V1+ m2,

so the additivity of the distance function follows.

We will sometimes call this model, the real Cartesian plane with congruence
of segments defined by the Euclidean distance function, the standard model of
our axiom system.

Exercises

The following exercises (unless otherwise specified) take place in a geometry with
axioms (11)-(13), (B1)-(B4), (C1)-(C3).

8.1 (a) Show that addition of line segments is associative: Given segments AB,CD, EF,
and taking A, B in order, then (AB + CD) + EF = AB+ (CD + EF). (This means that
we obtain the same segment as the sum, not just congruent segments.)

(b) Show that addition of line segments is commutative up to congruence: Given
segments AB,CD, then AB+ CD = CD + AB.

8.2 Show that “halves of equals are equal” in the following sense: if AB =~ CD, and if E is
a midpoint of AB in the sense that A « E « B and AE =~ EB, and if F is a midpoint of
CD, then AE =~ CF. (Note that we have not yet said anything about the existence of a
midpoint: That will come later (Section 10).) Conclude that a midpoint of AB, if it
exists, is unique.

8.3 Show that addition preserves inequalities: If AB < CD and if EF is any other seg-
ment, then AB + EF < CD + EF.
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8.4

8.5

8.6

8.7

8.8

8.9

Let r be a ray originating at a point A,

and let s be a ray originating at a point v

B. Show that there is a 1-to-1 mapping A_,/’/
@ : 17— s of the set r onto the set s that

preserves congruence and between-

ness. In other words, if for any X € r we B
let X' =¢(X)es, then for any X.,Y,

Zer, XY=X'Y', and XxYxZ<&

X'xY'xZ'.

Given two distinct points O, A, we define the circle with center O and radius OA to be
the set I" of all points B such that OA = OB.

(a) Show that any line through O meets the circle in exactly two points.
(b) Show that a circle contains infinitely many points.

(Warning: It is not obvious from this definition whether the center O is uniquely de-
termined by the set of points I that form the circle. We will prove that later (Propo-
sition 11.1).)

Consider the rational Cartesian plane Q* whose points are ordered pairs of rational
numbers, where lines are defined by linear equations with rational coefficients and
betweenness and congruence are defined as in the standard model (Examples 7.3.1
and 8.4.1). Verify that (11)-(13) and (B1)-(B4) are satisfied in this model. Then show
that (C2) and (C3) hold in this model, but (C1) fails.

Consider the real Cartesian plane R?, with lines and betweenness as before (Exam-
ple 7.3.1), but define a different notion of congruence of line segments using the
distance function given by the sum of the absolute values:

d(!\.B) = |a1 - b]l + |a2 - bzl,

where A = (a1,az) and B = (b1, b2). Some people call this “taxicab geometry” be-
cause it is similar to the distance by taxi from one point to anther in a city where all
streets run east-west or north-south. Show that the axioms (C1), (C2), (C3) hold, so
that this is another model of the axioms introduced so far. What does the circle with
center (0,0) and radius 1 look like in this model?
Again consider the real Cartesian plane R?, and define a third notion of congruence
for line segments using the sup of absolute values for the distance function:

d(A,B) = sup{|a, — by|,|az — by|}.
Show that (C1), (C2), (C3) are also satisfied in this model. What does the circle with
center (0,0) and radius 1 look like in this case?
Following our general principles, we say that two models M, M’ of our geometry are
isomorphic if there exists a 1-to-1 mapping ¢ : M — M’ of the set of points of M onto
the set of points of M’ written ¢(A) = A’, that sends lines into lines, preserves
betweenness, ie., A *BxCin M & A’ B'«C' in M’, and preserves congruence of
line segments, i.e., AB=~CDin M < A'B' =~ C'D"in M'".

Show that the models of Exercise 8.7 and Exercise 8.8 above are isomorphic to each
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other, but they are not isomorphic to the standard model (Example 8.4.1). Note: To
show that the two models of Exercise 8.7 and Exercise 8.8 are isomorphic, you do
not need to make the distance functions correspond. It is only the notion of congru-
ence of line segments that must be preserved. To show that two models are not iso-
morphic, one method is to find some statement that is true in one model but not
true in the other model.

8.10 Nothing in our axioms relates the size of a segment on one line to the size of a con-
gruent segment on another line. So we can make a weird model as follows. Take the
real Cartesian plane R* with the usual notions of lines and betweenness. Using the
Euclidean distance function d(A, B), define a new distance function

d(A,B)  if the segment AB is either horizontal or vertical,

d'(A,B) =
( ) {Zd(A,B) otherwise.

Define congruence of segments AB = CD if d'(A,B) = d'(C, D).
Show that (C1), (C2), (C3) are all satisfied in this model. What does a circle with
center (0,0) and radius 1 look like?

8.11 The triangle inequality is the statement that if A, B, C are three distinct points, then
AC < AB+ BC.

(a) The triangle inequality always holds for collinear points.

(b) The triangle inequality holds for any three points in the standard model ( Exam-
ple 8.4.1) and also in taxicab geometry (Exercise 8.7).

(c) The triangle inequality does not hold in the model of Exercise 8.10. Thus the tri-
angle inequality is not a consequence of the axioms of incidence, betweenness, and
congruence of line segments (C1)-(C3). (However, we will see in Section 10 that the
triangle inequality, in the form of Euclid (1.20), is a consequence of the full set of
axioms of a Hilbert plane.)

9 Axioms of congruence for Angles

Recall that we have defined an angle to be the union of two rays originating
at the same point, and not lying on the same line. We postulate an undefined
notion of congruence for angles, written =, that is subject to the following three
axioms:

C4. leen an angle / BAC and glven a Y

ray DF there exists a unique ray DE /

on a given side of the line DF, such that A c D /\/

L. BAC = [ EDF. 3

C5. For any three angles o, f,y, if « = ff and o = y, then f = y. Every angle is
congruent to itself.
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B
C6. (SAS) Given triangles ABC and DEF,
suppose that AB=DE and AC=DF, A c €
and / BAC = / EDF. Then the two tri- ¢ A
angles are congruent, namely, BC = EF,
/. ABC = / DEF and / ACB =~ / DFE. D F

Note that Hilbert takes the existence of an angle congruent to a given one
(C4) as an axiom, while Euclid proves this by a ruler and compass construc-
tion (1.23). Since Hilbert does not make use of the compass, we may regard
this axiom as a tool, the “transporter of angles,” that acts as a substitute for the
compass.

As with (C2), we can use (C5) to show that congruence is an equivalence
relation.

Proposition 9.1
Congruence of angles is an equivalence relation.

Proof The proof is identical to the proof of (8.1), using (C5) in place of (C2).

As in the case of congruence of line segments, we would like to make sense
of Euclid’s common notions in the context of congruence of angles. This propo-
sition (9.1) is the analogue of the first common notion, that “things equal to the
same thing are equal to each other.” The second common notion, that “equals
added to equals are equal,” becomes problematic in the case of angles, because
in general we cannot define the sum of two angles.

D

If /. BAC is an angle, and if a ray
e oS >
AD lies in the interior of the angle
/.BAC, then we will say that the angle
/[ BAC is the sum of the angles /. DAC
and /. BAD.

A C

However, if we start with the two given angles, there may not be an angle
that is their sum in this sense. For one thing, they may add up to a straight line,
or “two right angles” as Euclid says, but this is not an angle. Or their sum may
be greater than 180°, in which case we get an angle, but the two original angles
will not be in the interior of the new angle. So we must be careful how we state
results having to do with sums of angles.

Note that we do not have an axiom about congruence of sums of angles
analogous to the axiom (C3) about addition of line segments. That is because we
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can prove the corresponding result for angles. But in order to do so, we will
need (C6).

Hilbert’s use of (C6) = (SAS) as an axiom is a recognition of the insufficiency
of Euclid's proof of that result (I.4) using the method of superposition. To justity
the method of superposition by introducing axioms allowing motion of figures in
the plane would be foreign to Euclid's approach to geometry, so it seems pru-
dent to take (C6) as an axiom. However, we will show later (17.5) that the (SAS)
axiom is essentially equivalent to the existence of a sufficiently large group of
rigid motions of the plane. The axiom (C6) is necessary, since it is independent
of the other axioms (Exercise 9.3). This axiom is essentially what tells us that our
plane is homogeneous: Geometry is the same at different places in the plane.

Now let us show how to deal with sums of angles and inequalities among
angles based on these axioms.

Definition

If / BAC is an angle, and if D is a point B
on the line AC on the other side of A
from C, then the angles / BAC and
/.BAD are supplementary. £

y I
>
o

Proposition 9.2
If /. BAC and [ BAD are supplementary angles, and if / B'A'C’ and / B'A'D' are
supplementary angles, and if /. BAC = / B’A'C’, then also { BAD = / B’A'D".

Proof Replacing B’,C’,D’ by other
points on the same rays, we may as-
sume that AB=~ A'B’, AC >~ A'C’, and
AD = A'D'. Draw the lines BC, BD,
B'C', and B'D'. B
First we consider the triangles ABC
and A'B’C’. By hypothesis we have
AB = A'B" and AC = A'C' and /. BAC =
[ B'A'C'. So by (C6) we conclude that H 1 >
the triangles are congruent. In particu- D A ,
lar, BC = B'C' and / BCA = / B'C'A'. e
Next we consider the triangles BCD
and B'C'D'. Since AC = A'C' and AD =
A'D',and Cx A =D and C'+ A"+ D', we
conclude from (C3) that CD = C'D".
Using BC =~ B'C' and /. BCA =~/ B'C'A’
proved above, we can apply (C6) again
to see that the triangles BCD and B'C’D’
are congruent. In particular, BD =~ B'D’
and /. BDA =/ B'D'A".

d\'
>
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Now we consider the triangles BDA and B’D'A’. From the previous step we
have BD = B'D' and /. BDA =~ / B'D'A’. But by hypothesis we have DA =~ D'A’.
So a third application of (C6) shows that the triangles BDA and B'D’A’ are con-
gruent. In particular, / BAD = / B’A’D’, which was to be proved.

Note: We may think of this result as a replacement for (1.13), which says that
the angles made by a ray standing on a line are either right angles or are equal
to two right angles. We cannot use Euclid's statement directly, because in our
terminology, the sum of two right angles is not an angle. However, in applica-
tions, Euclid's (1.13) can be replaced by (9.2). So for example, we have the fol-
lowing corollary.

Corollary 9.3
Vertical angles are congruent.

Proof Recall that vertical angles are de-

fined by the opposite rays on the same (5
two lines. The vertical angles o and o’
are each supplementary to ff, and f is
congruent to itself, so by the proposi-
tion, o and o' are congruent.

Proposition 9.4 (Addition of angles) .

Suppose [ BAC is an angle, and the ray AD is in the interior of the angle / BAC.
Suppose [ D'A'C' = [ DAC, and [/ B'A'D' = / BAD, and the rays A'B' and A'C’
are on opposite sides of the line A'D’. Then the rays A'B and A'C' form an angle,
and / B'A'C' = /_ BAC, and the ray A'D' is in the interior of the angle / B'A'C'. For
short, we say “sums of congruent angles are congruent.”

Proof Draw the line BC. Then the ray
AD must meet the segment BC, by the
crosshar theorem (7.3). Replacing the
original D by this intersection point, we
may assume that B,D,C lie on a line
and B* D x C. On the other hand, re- A
placing B’,C’, D’ by other points on the
same rays, we may assume that AB =
A'B’, and AC= A'C', and AD = A'D".
We also have /BAD =/ B'A'D’ and
/. DAC = / D'A'C’ by hypothesis.

By (C6) we conclude that the tri-
angles ABAD and AB'A'D’ are con-
gruent. In particular, BD = B'D’ and
L BDA = B'D'A’.

B
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Again by (C6) we conclude that the triangles ADAC and AD’A'C’ are congru-
ent. In particular, DC =~ D'C' and /. ADC = / A'D'C’.

Let E’ be a point on the line B'D" with B+ D' * E’. Then /. A'D'E’ is supple-
mentary to /. A'D'B’, which is congruent to /. ADB. So by (9.2) and transitivity of
congruence, we find that 2~ A'D'E' =/ A'D'C’. Since these angles are on the
same side of the line A'D’, we conclude from the uniqueness part of (C4) that
they are the same angle. In other words, the three points B’, D', and C' lie on a
line.

Then from (C3) we conclude that BC = B'C’. Since /. ABD = / A'B'D' by the
first congruence of triangles used in the earlier part of the proof, we can apply
(C6) once more to the triangles ABC and A’'B’C’'. The congruence of these tri-
angles implies /. BAC = / B'A’C’ as required. Since B’,D’, and C’ are collinear
and D'A’C’ is an angle, it follows that A’, B’, C" are not collinear, so B’'A’C’ is an
angle. Since B’ and C’ are on opposite sides of the line A’D’, it follows that
B'+ D'+ C’, and so the ray A'D' is in the interior of the angle / B'A'C’, as
required.

Next, we will define a notion of inequality for angles analogous to the
inequality for line segments in Section 8.

Definition

Suppose we are given angles /. BAC and

[ EDF. We say that / BAC is less than ® E

/. EDF, written / BAC < /_EDF, if there &
exists a ray DG in the interior of the P
angle / EDF such that / BAC = / GDF. A C T/ =
In this case we will also say that / EDF *
is greater than / BAC.

Proposition 9.5
() Ifoz=od andf=p' thena < f < o’ < f'.
(b) Inequality gives an order relation on angles, up to congruence. In other words:
(i) If o< fand f <y, then o < y.
(ii) For any two angles o and f, one and only one of the following holds: o < f3;
o= fa>f.

Proof The proofs of these statements are essentially the same as the correspond-
ing statements for line segments (8.4), so we will leave them to the reader.

Definition
A right angle is an angle « that is con-
gruent to one of its supplementary ﬁ' o

angles f3.
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Note: In this definition, it does not matter which supplementary angle to o we
consider, because the two supplementary angles to o are vertical angles, hence
congruent by (9.3). Two lines are orthogonal if they meet at a point and one,
hence all four, of the angles they make is a right angle.

Proposition 9.6
Any two right angles are congruent to each other.

Proof Suppose that o = / CAB and o' =
L C'A'B’ are right angles. Then they will C
be congruent to their supplementary
angles f,B', by definition. Suppose o
and o' are not congruent. Then by (9.5)

either o <o’ or o <o Suppose, for 61 o
example, o < o’. Then by definition of )
inequality there is a ray A’E’ in the in- D A g

terior of angle o’ such that o« = LE’A;B_’).
It follows (check!) that the ray A'C’ c ,

is in the interior of / E'A'D', so that €

p' < L E'A'D'. But LE'A'D' is supple-

mentary to / E'A’B’, which is congruent

to a, so by (9.2), L E'A'D" = . There- (g oA

fore, f' < f. But a = f and o' = f’, so :

we conclude that o' < o, which is a D, A’ B’

contradiction.

Note: Thus the congruence of all right angles can be proved and does not need
to be taken as an axiom as Euclid did (Postulate 4). The idea of this proof already
appears in Proclus.

Example 9.6.1
We will show later that the real Cartesian plane R? provides a model of all the
axioms listed so far. You are probably willing to believe this, but the precise
definition of what we mean by congruence of angles in this model, and the proof
that axioms (C4)-(C6) hold, requires some work. We will postpone this work
until we make a systematic study of Cartesian planes over arbitrary fields, and
then we will show more generally that the Cartesian plane over any ordered
field satisfying a certain algebraic condition gives a model of Hilbert's axioms
(17.3).

The other most important model of Hilbert's axioms is the non-Euclidean
Poincaré model, which we will discuss in Section 39.
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Exercises

9.1

9.2

9.3

9.4

(Difference of angles). Suppose we

are given congruent angles / BAC =

LB A'(;L" Suppose also that we are given B
aray AD in the interior of Z BAC. Then

there exists a ray A'D’ in the interior of D)
L B'A'C" such that / DAC=/D'A'C’

and / BAD =~/ B'A'D’. This statement

corresponds to Euclid’s Common Notion A s
3: “Equals subtracted from equals are

equal,” where “equal” in this case

means congruence of angles. B

Suppose the ray AD is in the irLui()r of €
the angle / BAC, and the ray AE is in

the interior of the angle / DAC. Show

that AE is also in the interior of £ BAC. A

C

Consider the real Cartesian plane where congruence of line segments is given by the
absolute value distance function (Exercise 8.7). Using the usual congruence of angles
that you know from analytic geometry (Section 16), show that (C4) and (C5) hold in
this model, but that (C6) fails. (Give a counterexample.)

Provide the missing betweenness argu- C

ments to complete Euclid's proof of (1.7) D
in the case he considers. Namely, as-

suming that the ray AD is in the inte-

rior of the angle / CAB, and assuming

that D is outside the triangle ABC, prove

that CB is in the interior of the angle

L ACD and DA is in the interior of the

angle /. CDB.

10 Hilbert Planes

We

have now introduced the minimum basic notions and axioms on which to

found our study of geometry.




