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the tollowmg “proof" that the sum oft :angles ofa triangle is equal to two

riglitang .pp::ndtntottht theoryotparallels, due to Thibaut(l7751832)
Let ABC be the given triangle

Take a gment AD on th line AC,

pointing away from C Rota .
position AB on th me AB Th
it along the li B into the po.
BF Rotat - to BC‘, slide to CH, rotate to
Cl, and sli back to AD in this pro-

~ ~ the segment AD has made one
rotation, which is 4 right

But the amount it has rotated
is t ual to the sum of th

. DAE,FBG, and HC

w. find that the sum ofthe three inte
rior angles of the triangle is equal to
two right angle

33 14

34 Neutral Geometry

Sir Henry Savile, in his public lectures on Euclid’s Elements in Oxford in 1621,
said, “In this most beautiful body of Geometry there are two moles, two blemr
i hes, and no more, as far as 1know, for whose removal and washing away, both
older and more recent authors have shown much diligenc He was referring to

the theory of parallels and the theory of proportion. Eur ’s theory of proport
tion has been thoroughly vindicated, and re eives its modern expr on in the

segment arithmetic diat we have explained in Chapter 4.

The work on the theory of parallels, however, did not lead to the expected

result. Instead ofcont‘irming Euclid’s as the one true geometry, these researches
showed that Euclid’s was only one of many possible geometries. The othe s are
what we now call noanu lidean geometries. The story of this di very is one

' . apters in the history of mathemat s, and has been
amply told els where, Here we will confine ourselves to the briefest outline.

We can distinguish four periods. The first, which we have elaborated in the
previous s ion, might be called "dissatisfaction with Euclid,” While fully ace

cepting Euclid’s Elements as the true geometry, (:ritit“ said only that his treat
ment of this topi. could have b . .n better. So they tried to better Euclid, .ither
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by proving the parallel postulate, or by replacing it with some other more natur

ral assumption.
cond period, exemplified by the work of Saccheri, Legendre, and

false

The

Lambert, was based on the attitude, let us suppose the parallel postulate '
and .what conclusions we can draw, in this way they developed a colle
of r ults that would be true if the parallel postulate were false, still expecting

ultimately to find a contradiction and thus vindicate Euclid So strong was die

power of tradition that even afier meticulously proving a whole series of propo
sitions in this new geometry, each of these authors fell into error and deluded

himself into thinking he had found a contrad tion.
what a small step of die imagination, with what great consequences, was die

transition to the third period! All it required was to think, yes it i: po ible to
have a geometry in which the parallel postulate is false, and these are first
theorems, This step was taken independently by Carl Friedrich Gauss (17777
1555) in Germany, Janos Bolyai (180271860) in Hungary, and Nicolai Ivanovich

‘

evsky (179371856) in Russia. Although Gauss was the first to realize die
of this new geometry, he published nothing of his researc , leaving

Bolyai and Lobachevsky each to believe that he was the inventor of this new gee

ometry. Bolyai exclaimed, in a letter to his father, “Out of nothing I have created
a strange new universe.”

The fourth period contains the confirmation of these new geometries by pro
viding models for the axiom systems to show their cons tency. This occurred

only later, with the work of Beltrami, Klein, and Poinca

In this and the next section we will describe some work of the second period,
Then in later sections we will give a model of the noanuclidean geometry due

to Poincare, and a fuller axiomatic development of the theory, containing the
results of Bolyai and Lobachevsky, in a logical framework provided by Hilbert.

A geometry satisfying Hilbert’s axioms of incidence, betweenness, and cone
gruence, in which we neither affirm nor deny the parallel axiom (p), will be
called a neutral geometry. Thi is the same as a Hilbert plane, but die terminology

emphasizes that we do not assume (p), Recall from Se tion 10 that the results of

Euclid, Book 1, up through (125), with the possible exception of(1,1) and (122),
also hold in neutral geometry, A Hilbert plane in which (1)) does not hold will be
called a nantEucluJem‘l gmmerry, We have already seen one example of a non
Euclidean geometry (18.4,3), but that one is semirEuclidean, in die 'ense that
the angle sum in a triangle is still equal to 2RA (two right angles) (Exerc e 184),
Now we will consider other geometries in which the angle sum of a triangle may

be different from ZRA,

The results of this second period are mainly due to Girolamo Saccheri

(166771733) and Adrien Marie Legendre (175271533). Saccheri’s book Euclldes

1117 0mm naevu UlndlL’dtMS was published in 1733. The title “Euclid freed of every
blemish” recalls the quotation from Savile above. The first 32 propo tions are
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a marvel of mathemat :al exposition, Unfortunately, after that his previously
impeccable rigor lap and he says that he has proved the parallel postulate,

because if it were fal , there would be two lines having a common perpendicur
lar at infinity, which is “repugnant to the nature ofa straight line.”

e s work was perhaps before its time because it did not re e the
recognition it des rved, and lay hidden in obst rity until die end of the nine

teenth century, Essentially equivalent results were discovered independently

half a century later by Legendre, whose book Ele'mmts ile Ge'm‘rle'trle was first

published in 1794. it was followed by many new editions, reprints, and trans

lations, which had a wide influen- on the teaching of geometry and revitalized

interest in the question of parallels.

We start with a figure extensively studied by Satcheri which goes back to
Claviu., in his commentary on Euclid’s (129), where he proposes the axiom that

‘ion 33) Since it was Claviu's edition of Euclid that
eri by the Jesuit mathematician Tommaso Ceva, we

may assume that Saccheri was inspired by Clavius to study this figure further.

proposition 34.1

In a Hilbert plane, suppose that two equal

perpendiculars AC, BD stand at the ends
of an intewal AB, and iue JDlYZ CD. (This
18 called a Saccheri quadrilateral.) Then
the angles at C and D are equal, and fine
ther-more, the line )Dlnlng the midpoints of
AB and CD, the midline, is perpendicular A B

to both.

B’Dflf Given ABCD as above, let E be
the midpoint of AB and let 1be the per
pendicular to AB at E. Since I is the per
pendicular bisector of AB, the points

A.C lie on one side of Z, while B,B lie
on the other side. Hence l meets the
segment CD in a point F. By (SAS) the
triangles AEF and BEF are congruent, A a 5

Hence the angles LFAE and LFBE are
equal, and AF FB

By subtraction from the right angles at A and B we find that the angles LCAF
and LDBF are equal, So by (SAS) again, the triangles CAP and DBF are congrue
ent. This shows that the angles at C and D are equal, and that F is the midpoint

of CD,

The two pairs of congruent triangles also imply that the angles LCFE and
LDFE are equal. So by definition, both of these angles are right angles,
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Remark 34.1.1
From the equality of die angles at C and D, Saccheri distinguished three a. s,
which he called die hypothe of the acute angle, the hypoth is of the right

angle, and the hypothe is of the obtuse angle, according to whether C and D

were acute, right, or obt He showed that if any one of diese holds for one
such quadrilateral, it holds for all. His proofs used continuity (in the form of the

intermediate value theorem), but we will show in the following propositions that
his result is also true in an arbitrary Hilbert plane.

proposition 34.2

Let ABCD he a quadrilateral wlth right
angles at A and B, and unequal sides AC,

BD, Then the angle at C is greater than

the angle at D ifand only ifAC <BD. D

Deaf Suppose AC <BD, and choose E C E
on BD such that AC:BE. Then ABCE

is a Saccheri quadrilateral and LACE:

LBEC, by the previous proposition.

Now, the angle LACD is bigger than
LACE, and LBEC is bigger than the an A B
gle at D by the exterior angle theorem

(1.16), so we find that the angle at C is

bigger than the angle at D, as required.
On the other hand, if AC > BD, the same argument with roles reversed

shows that the angle at C is less than the angle at D. Hence we obtain the “ifand
only if” conclusion of die proposition.

proposition 34.3

Let ABCD be a Saccheri quadrilateral, let C

P he a point on the segment CD, and let
PQ be the perpendicular to AB, Let at be
the angle at C (equal to the angle at D),

(a) IfPQ<BD, then at is acute.
(b) lqu:BD, then a is right,

(c) IfPQ > BD, then a is obtuse. A Q '5

Hoof Let /I. )r be the two angles at P, In case (a), ifPQ < BD, then PQ< AC also,
and from the previous proposition we obtain at < /j and at < )r. Hence
2a < /I + )r:2RA, Thus a is acute. The proofs of cases (b), (c) are analogous.
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Remark 34.3.1
Once we have proved all three cases (a), (b), and (c), it follows that each one is

an equivalence, not only an impl ation.

Proposition 34.4

Again let ABCD he a Saeeher-i quadrilateral, hut this time let P be a paint an the line

CD outside the interval CD. Let PQ he the perpendicular to the line AB, and let at he
the angle at C (equal to the angle at D),

(a) IfPQ> BD, then at is acute,

(b) IfPQ: BD, then at is right.

(c) IfPQ < BD, then at is ahtuse,

Deaf In case (a), assuming PQ>BD,

choose E in PQ such that BD: QE.

Draw CE and DE. Then We have three
Saccheri quadrilaterals, We will com

pare their angles, Let 1./}, y be the top
angles of the quadrilaterals ABCD,

BQDE, AQCE, respectively, Let r):

LEDP. Then is is an exterior angle ofthe
triangle CDE, so by (1,15), (3 > LDCE:

a — 7, 0n the other hand, looking at the

angles at 15, we see that /}> y, Now,
ZRA:ai+/j+t$>at+y+at— :21, so
at is acute.

For ca (b), when PQ: BD, then AQCP is a Saccheri quadrilateral, so by

(34.312) its angle, which is equal to the angle ofABCD, is right.
In case (c), when PQ< BD, the

proof is similar. Extend PQ m E with
BD:QE and oin CE,DE, This gives

three Saccheri quadrilaterals, with upper
angles wt.) as marked. Let t):LPDE, 5"XThen by the eitterior angle theorem

(1.16), is > LDCE:y —
ii. Loolting at a 3'

m

we see that ,/, > /r, On the other hand, P

looking at D we see that at+/f—e
not So, combining these results, we 5,

obtain A I?

2RA:at+/f—e§<at+y—tl<2at.

Hence a is obtuse, as required.



34. Neutral Gmmetrv 309

Remark 34.4.1
A. 'n the previou. proposition, once we have proved all three cases, they each

become equivalen , not i st impli ations,

Theorem 34.5 (Saccheri)
In any Hilbert plane, lfam: Saccheri quadrilateral nas acute angles, so d0 all Saccheri
quadrilaterals, If one has right angles, so do they all, If one has obtuse angles, so d0
they all,

Hoof We will give the proof only in the acute case, si

other cases are identical.
Suppose ABCD is a Saccheri quadric

lateral with acute angles, and let EF
be its midline (34.1), If A’B’C’D’ is an

‘e the proofs in the two

other Saccheri quadrilateral with mid. . D,
line equal to EF, then it can be moved a F D

by a rigid motion to make the midlines _, D,

coincide, Suppose All <A’B’, We obtain

a figure as shown, with at acute. Hence,
by (34.4), BD <B’D’. Then by (343), ii’
- ,

i / .is acute, If AB >A B, we run the same A’ A E G 9’
argument in the reverse order, It folc

lows that all Saccheri quadrilaterals
with midline equal to EF have acute

angles.

Next we show that for any other segment, there exists a Saccheri quadrilatc
eral with acute angles and midline equal to diat segment.

Lay off the given segment as EG on

the ray EB, Let the perpendicular to AB

at G meet CD in H. Reflect G and H in C

EF to get 61.11,, Reflect F and H in A3

to get F2, H2. Now, GiGHiH is a Saccheri
quadrilateral with midline EF, so by the

previous argument, its angle /} is acute.
But then FFZHHZ is another Saccheri
quadrilateral with the same acute angle

/r and midline EG, Now by the earlier

argument, every other Saccheri quadric

lateral with midline equal to EG has

acute angles. But EC was arbitrary, so
the theorem is proved.

Next we will show how to interpret this result on Saccheri quadrilaterals in

terms of the sum ofthe angles in a triangle.
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Proposition 34.5

Given a triangle ABC, there is a Saccheri quadrilateral for which the sum of its two
top angles is equal to the sum of the three angles of the triangle,

Hoof Let ABC be the given triangle,
Let D and E be the midpoints ofAB and

AC, and draw the line DE, which we
call the midline of the triangle, Drop A

perpendiculars BF, AG, CH to DB,

Now, AD:DB, and the vertical F H
angles at D are equal, so by (M3) the

J D r;
5 1

triangles ADC and BDF are congruent,

Similarly, AE:EC and the vertical

angles at E are congruent, so the tri
angles AEG and CEH are congruent,

From congruent triangles we obtain

BF 2 AG:CH. The quadrilateral FHBC
has right angles at F and H, so it is a
Saccheri quadrilateral (upside down),
The angles ofthe quadrilateral at B and

C are composed of the angles of the tri

angle at B and C, plus angles that are

congruent to the two parts of the angle

at A, divided by the line AG. Hence the
angles at B and C of the quadrilateral

equal the angle sum of the triangle. It
follows that the triangle and the quadrir
lateral have equal defect,

If G happens to fall outside the interval FH, the same argument works, ex
cept that we use differences instead ofsums of angles.

Theorem 34.7
In any Hilherr plane;

(a) If there exists a triangle whose angle sum is less than ZRA, then every triangle
has angle sum less than 2m,

(b) The followlng eanelinons are equivalent:

(i) There exists a triangle urith angle surri:ZRA.

(ii) There exists a rectangle,
(iii) Ever-y triangle has angle sum:ZRA.

(c) If there exists a triangle whose angle sum is greater than ZRA, then every triangle
has angle sum greater than 21m,
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Hoof (a) Ifthere s a triangle with angle sum less than ZRA, then die assoc
ciated Sact eri quadrilateral of (34,5) must have acute angles. By (34,5) it folr
lows that every Saccheri quadrilateral has acute angles, and then by (34,6) again,

every triangle must have angle sum less than ZRA.

The proof of (b) is the same, where we note that a rectangle is just the same
thing as a Saccheri quadrilateral with right angles, The proof of (c) is the same
as the proof of(a).

Definition
In case (a) of the theorem, we say diat the geometry is semihyperholic. In case
(b) we say mat it is semichclldean, and in c se (c) we say that it is semielliptic,

Remark 34.7.1

Note that these three cases are equivalent to what Saccheri called the hypoth
of the acute angle, the hypothesis of the right angle, and die hypothesis of die

obtuse angle. Thus all Hilbert plane' can be divided into fliese three clas' 3, Of
course, a Euclidean plane, or more generally any Hilbert plane satisfying (P), is
semirEuclidean, by (1,32), On the other hand, we have seen an example of a

: dean plane that does not satisfy (1’) in Exer se 18.4,

erve the term hyperbolic for geometries satisfying Hilbert’s hyperbolic
f, Section 40), Those geometries will be semihyperbolic, but there are

also semihyperbolic geometries that are not hyperbolic (Exercise 39,24),
As for the semielliptic case, these were first d vered in 1900 by Dehn,

who called them noanegendrean. The term elliptic is usually applied to gene
metries like a projective plane in which there are no parallel lines at all, These

do not satisfy Hilbert’s axioms, so fall outside our realm of inquiry, However, a
suitably small patch ofa spherical geometry over a nonrArchimedean field gives

an example ofa semielliptic Hilbert plane (Exercise 34.14).

Definition

We say that a triangle is Euclidean if the sum of its angle' is equal to ZRA. Othr
erwise, we call it naanuL'lldean. To measure the divergen . of a triangle from
the Euclidean case, we define the defect of any triangle to be ZRA7(sum of

angles in the triangle). Thus a o for a Euclidean triangle, a is a positive angle
for a triangle in a semihyperbolic plane, and a is the negative of an angle for a
triangle in a semielliptic plane,

Lemma 34.8

If a triangle ABC is cut into two triangles hy a single transversal BD, the defect of the
hig triangle is equal to the sum of the defects of the two small triangles:

(F(ABC):d(ABD) +rl(ECD).
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nnot Label the angles as shown in die

diagram, Then

(F(ABD):ZRA— at —/3, —tli,

(5(BCD):ZRA — /12 — r32 — 7-

Since 614-62:ZRA, by adding we

obtain

d(ABD) +(5(BCD)

:2RA—a—/r, —/rz

)7 n
d(ABC), i)

as required.

The Theory of Parallels in Neutral Geometry

Given a line I and a point P not on I,
we know from (1,31) that there exists a
line through P parallel to l. ifthe Hilbert

plane satisfies Playfair’s axiom (P), that
parallel is unique. But in the non
Euclidean case, there may be more than

one parallel to l through P. Among all

these parallels, there may be one that is
closer to l than all the others on one 1
side, To make a formal definition, it

matters which end of the line we look

at, so we will phrase it in terms of rays.
We denote a ray by the symbol Aa,

where A is its endpoint, and a denotes Athe line carrying the ray, together with /
a choice of one ofthe two directions on

the line. Two rays are coterminal if they lie on the same line and “go in the same
direction.” This can be made precise by saying that one ray is a subset of the
other, Thus if Aa is a ray and A’ is another point on the line carrying a,
we denote by A’a the corresponding coterminal ray,

Definition
A ray Aa is liminng parallel to a ray B17 if
either they are coterminal, or if diey lie

on distinct lines not equal to the line
AB, they do not meet, and every ray in

the interior of the angle BAa meets the
ray Bh. In symbols we write Aa mBh.
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It requires some Work, in the following propositions, to show that this notion

is an equivale relation, Note that we say nothing about the existence ofs
limiting parallel

,
All the following results should be understood in the s nse

that they hold whenever the limiting parallels ex' Later, in Section 40, we will

introduce the hyperbolic axiom, which postulat the existe of limiting pare
allels from any point to any given ray.

Proposition 34.9

If AalHBh, and if A’a, B’h are rays coterminal to Aa, Bh respectively, then
A’alHB’h.

Hoof It is ufficient to replace one ray

at a time by a coterminal ray, So first,
suppose that A’ is on the ray Aa, We A
must show that every ray n in the inter
rior of the angle BA’a meets the ray Bh. \Take a point P on the ray ri, different ‘from A’, Then the ray 3 lies in the

interior of the angle BAa, so by hypothe
esis it meets the ray B17 in a point C. 5
Now, the ray n cuts one side of the tri
angle ABC, so by Pasch’s axiom (B4) it

out another, The side AB is imr
possible, so n meets BC, which is cone
tained in the ray Bh, as required,

c

t

. ,
P

Next, suppose A is on the line a, but
not in the ray Aa. Let A’n be a ray in A’
the angle BA’a, and take a point P on
the lineL,but not in die ray A’n, Then A
the ray PA , after it pas s through A, is

in the interior of die angle BAa, so
meets Bh in a point C, By the crossbar B

C

A

B 9’

theorem (7.3) A’n will meet AB, and
then by Pasc s axiom it will meet BC,

If we replace B by a point B’ in the

ray Bh, or by a point B” on the line h

outside the ray Bh, the proof is easier.
Any ray from A in the interior of the

appropriate angle must meet the ray
8’]; or 8”]; either by the crossbar theor l)

rem or by the property Aa (H Bh.

In this proof we passed over in silence a small point, namely to show that
after replacing Aa,BI7 by coterminal rays A’a.B’I7, we still have satisfied the

r,

Sidoli
Highlight
Pasch's axiom states that if a line enters a triangle crossing one line then it must meet one or the other of the other two lines. 

Sidoli
Highlight

Sidoli
Highlight
The Crossbar Theorem shows that for any angle and a segment joining the two sides of the angle, a line passing through the vertex of the angle in its interior will intersect the segment. 
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condition that the rays A’a and 8’]; do not meet, and they lie on lin s not equal

to A’B’, For this it i fi-‘lcient to show that if Aa (H Bh, then the line supporting

those rays do not meet, We leave this as Exe

Proposition 34.10

Ifa my Aa is limiting parallel to another rai/ Bh, then also Bh is limiting parallel
in Au.

nnot 1f the rays are coterminal, this is trivial, so we may assume that a and h

are distinct lines Drop a perpendicular AB’ to the line h, Then by the previous

propos on, Aa i. imiting parallel to B’h, and it will be suflicient to prove B’h
limiting parallel to Aa, In other words, changing notation, we may assume that

the angle AB}; is a right angle,

We must show that any ray Bn in

the interior of the angle at B meets die
ray Aa. Suppose it does not, Drop die

perpendicular AC from A to n. Since

the angle ABn is acute, by the exterior A
angle theorem, C mu. lie on the ray

Bn, not on the other side of B. In the
triangle ABC, the angle at C is right,

while the other two angles are acute,
Hence by (1.19), AC <AB, (Why is the C a
angle at A acute? Because it is less than _:

I3the angle BAa, and this angle must be

less than or equal to RA. omerwise, the

perpendicular to BA at A would lie
inside the angle BAa and be parallel to

Bh, contradicting our hypothesis)

Rotate C, n, and a around the point
A until C lands on a point C’ ofAB, and
n’.a’ are the images of n,a. Then Aa’
will meet Bh, and n’ will be parallel to
h, so by Pasch’s axiom, it will meet (1’, Cr
Rotating back, we find that n meets Aa,
a contradiction,

Proposition 34.11
Gwen tnree rays Aa. Bh. Cc, ian mEl; and 817 mCc, tnen Aa m Ce.

Iraof if any two are coterminal, the result follows from the previous proposi

tions 'o we may assume that they lie on distinct lines.
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Lemma 34.12
Given three rays Aa,Bh, Cc lying on distinct lines, with Aa H) Bh and Bh H) Cc, after
replacing one hy a coterminal ray if necessary, we may assume that A, B, and C are
collinear,

lroaf lfA.C lie on opposite sides of the line h, then die segment AC meets die
line h in a point B’, Replacing Bh by die coterminal ray B’h, we have A.B’.C
collinear,

If A.C lie on the same side of the

line h, we consider the angles ABh and
C317, If these angles are equal, then

A.B.C are collinear, if they are not C
equal, one must be small; say CE}; is A
smaller. Then the ray BC is in the

interior of the angle A317, and BhHlAa
by (34.10), so the ray BC meets Aa in a b
point A’. Replacing Aa by A’a we have

A’.B,C collinear. 1f ABh is smaller, the 3
same argument worlts replacing C by a

point C’,

Doctor/3411), continued By the lemma, we may assume A.B.C collinear. it

follows immediately from the hypotheses that the rays Aa.BI7. Cc are all on the

same side of the line ABC,

A
Case 1 If B is between A and C, take

any ray An in the interior of the angle
CAa. Since Aa Hl Bh, this ray meets Bh in
a point 8’. Then B’h (H Cc by (34,9), so

the continuation of that ray will meet
Cc, Hence Aa m Cc,

A

Case 2 C is between A and B. In this

case a ray An in die interior of the angle h 5:

Grid meets I7 in a point B’, Then Cc L

must meet n by Pasch’s axiom, C b
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Case 3 A is between C and B. The proof is the same, taking into account
1 B17 by (34,10),C:

Remark 34.1z.1

The proof of Case 2 of(34.11) actually shows a stronger resu :lan mBh, if C is
between A and B, and if Cc is any ray entirely in the interior of the angles BAa

and A317, then Ce is also limiting parallel to Aa and Bh.

Corollary 34.13

The relation “lm’llm‘tg parallel” for rays is an equivalence relation, which includes the
equivalence relation of being coterminal. We define an end to he an equivalence class
of limiting parallel rays.

Exercises

341 lfA/5CD is a S

CU an me
'D

c

en quadrilateral, Show that CD >AB if and only it the angles at

34 2 Define a Lurrihert quadrilateral to be a

quadrilateral ABCD With nght an
at A,B,C Show that the fourth angle

nght, or obtu according

. geometry
is

,
:mihyptzrholltl,

an, or semielliptic

he diameter of

, triangle insc ibed in the

Show that tht angle at C

34 4 in a semihyperbolic or a semielliptic plane, prove the (AAA) congruent; - theorem
for tnangles it two triangl s ABC and A’B’C’have LA:LA’, LB:LB’, Lt::

L C’, then the two tnangles are congruent

how that for any line and any point A
many lines through A parallel to i (Hint Use Saccheri

show directly trom
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34 7

34 8

34 9

34 It)

3411

3412

in a Hilbert plant

any ray Bh, ther,
tistying De ekind’s axiom (D), show that for any point A and

exi,
a ray Aa trom A, limiting parallel to Eli

ln the Hilbert plane of [18 4 3) how that there do not exist any pairs of limiting
parallel rays lying on distinc line

(ASAL) Gi tour rays Aa, Bh, A’a’,

B’h’, assum that LBAa:LB’A’a’,
AB:A’B’, and LABh:LA’B’h’ Show
that An ll Blr it and only itA’u’ lll B’lr’

2p

(ASL) Given AalllBh and A’a’lllB’h’, assum‘ LBAa:LB’A’a’ and AE:A’B’
Then LABh LA’B’lr’ We call the figure consisting of the segment AB and the
two limiting paral rays Aa and Bh a limit triangle

GIVCn a limit triangle aABlr, c ~truct

its midline as follows Let the angle bi-
.ors at A, B me at a point C Drop

ndicul' CD. E from C to aJi
Join DE, and let c be the perpendicu-

lar from C to DE

(a) Show that ci- is limiting parallel to
Au and Bh

(b) Show that reflection in the line r-
in anges a and h Thus c play a
role for the rays Aa and Bh similar

to the role of the angle his 2101' of

an angle, which int hanges the two

, .
of an angle by

(
n think of '

the three (generalized) angle in

oft limit triangle

Show that the analogue of Pasch‘s
axiom (B4) holds tor a limit mangle A

aABl7 ltl alin that dt snot n-
tain A or B, and d not contain a ray 1,
limiting parallel to Au or Blr, and iii 3

- ,itle AB,Aa, or Blr, then it
,

ind side, but not all ,(



318 7. Non ' Geometry

3413 splieiieaigeorrietry Let Fire a E ilidt norder d field in Lhzt: can
bythe quation x7+yfollows Our sHpvl‘rltsan thepoints

Er

. .gg.mnts otF” insideth.sph.
if the proj ed angle. on the tangent planes to the sphere at their
congruent
which of Hil s

axioms hold in this geometry7 You Will see right away that

not malt- very good s’ns so it is not a Hilbert
axioms (C1)(C5) and (ERM) do hold

34 14 (a) Now suppos‘ that w - take F to he a non—Archim rd n field, such as the o

(18 4) Let th an Inhnllt nt in F, take th ph of radiu t, and takr

of any triangle in thi, g
i

m , ry is greater than two right angl is This is an example
ofa ~emi.elliptic Hilh plane

(b) Again talte Flo be a non—Archimedean field, and let ll, be the . of points- on a
sphere of radius 1whose dista trom a hxed point A is inhni mal Show that

ll, is another semielliptic Hilbert plane, and show that ll, is not isomorphic to the

plane llO ofpart (a) Hint cf Exe

34 15 in any Hilbert plane, show that the three angle bi.
point

ors of a tnangle meet in a

34 it; in any Hilbert plane, it two ofthe perpendicular his .;

meet, then all thret :rpendieular b
. of a triangle

3417 .ay that two lin s in a Hilbert plane a trictly parallel if every transy . line
makt :qual alternate interior angles Show that the following conditions are

equivalent

(i) The plane is semi-Euclidean

(ii) For every point p and every line l, th.

stnetly parallel to l
. exists a unique line m through F

(iii) Th, . : , .tone pair of distinct stnetly paral ,1 lines

3418

to n (analogue it (i 30))
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ow that if two of the altitu of a triangle me , then
ame point

34 20 ln a ~emi-Euclid an pla ~ ow that the medians ofa mangle all m in a point

34 21 ln any Hilbert plane, show that the line Joining the midpoints oftwo sides ofa tri-

angle is orthogonal to the perpendicular bisector of the third side

35 Archimedean Neutral Geometry
lfwe add Archimedes’ axiom to the axioms of neutral geometry, we have the

remarkable fact that the angle sum of a triangle is always less than or equal to

two right angles, In other words, the semielliptic c ' is impossible, S "heri’s

proof of this result uses a continuity argument, so we prefer the method of
Legendre, using a repeated applit: ion of the construction Euclid used in (1.16)
for the proof of the exterior angle theorem, in either case, the proof makes

-- .ntial use ofArchimedes’ axiom. To begin with, we show that the analogue of

Archimedes’ axiom holds for angles,

Lemma 35.1
In a Hilbert plane with (A), let ii. /} he given angles. Then there exists an integer n > 0

such that nit > /1, or else not becomes undefined by exceeding 2RA.

lroof First we make a reduction. Given

the angle /1 at 0, measure ot=f equal seg
ments 0A and CB on the two arms, and A
draw AB, The line 0C joining o to the
midpoint of AB will bi .ct the angle /t C
and will make a right angle at C,

Since it i
,
st as good to prove the

lemma for g/t, we reduce to studying o
*

B
the case of an angle contained in a right

triangle.
So now let OAB be a right triangle 5

with the angle /t at o and a right angle
at A. Suppose, by way of contradiction,

that not 3/t for all n. Lay off the angle or
inside the triangle, and let that angle

cut off a segment AA, on the line AB. A
Again lay off the angle at at o to cut a ‘segment A,A2 on die line AB. Contian

ing in this manner, we obtain a se

quence of points A1,A2,Ar,... on AB, r‘
1

Alwith each succ ive segment A,A,+i ’2“subtending an angle ii to o, o A


