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33.13 Discuss the following “proof” that the sum of the angles of a triangle is equal to two
right angles, independent of the theory of parallels, due to Thibaut (1775-1832):
Let ABC be the given triangle.
Take a segment AD on the line AC,
pointing away from C. Rotate it to the
position AE on the line AB. Then slide
it along the line AB into the position
BF. Rotate to BG, slide to CH, rotate to
ClI, and slide back to AD. In this pro-
cess, the segment AD has made one
complete rotation, which is 4 right
angles. But the amount it has rotated
is equal to the sum of the exterior
angles DAE, FBG, and HCI. Replacing
these by their supplementary angles,
we find that the sum of the three inte-
rior angles of the triangle is equal to
two right angles.

33.14 J.J. Callahan, then president of Duquesne University, in his book Euclid or Einstein
(1931) claims to prove the parallel postulate of Euclid, and thus nullify the theories
of Einstein based on non-Euclidean geometry. If you can locate a copy of his book,
read his proof and find the flaw in his argument.

34 Neutral Geometry

Sir Henry Savile, in his public lectures on Euclid's Elements in Oxford in 1621,
said, “In this most beautiful body of Geometry there are two moles, two blem-
ishes, and no more, as far as I know, for whose removal and washing away, both
older and more recent authors have shown much diligence.” He was referring to
the theory of parallels and the theory of proportion. Euclid’s theory of propor-
tion has been thoroughly vindicated, and receives its modern expression in the
segment arithmetic that we have explained in Chapter 4.

The work on the theory of parallels, however, did not lead to the expected
result. Instead of confirming Euclid's as the one true geometry, these researches
showed that Euclid’s was only one of many possible geometries. The others are
what we now call non-Euclidean geometries. The story of this discovery is one
of the most fascinating chapters in the history of mathematics, and has been
amply told elsewhere. Here we will confine ourselves to the briefest outline.

We can distinguish four periods. The first, which we have elaborated in the
previous section, might be called “dissatisfaction with Euclid.” While fully ac-
cepting Euclid's Elements as the true geometry, critics said only that his treat-
ment of this topic could have been better. So they tried to better Euclid, either
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by proving the parallel postulate, or by replacing it with some other more natu-
ral assumption.

The second period, exemplified by the work of Saccheri, Legendre, and
Lambert, was based on the attitude, let us suppose the parallel postulate is false
and see what conclusions we can draw. In this way they developed a collection
of results that would be true if the parallel postulate were false, still expecting
ultimately to find a contradiction and thus vindicate Euclid. So strong was the
power of tradition that even after meticulously proving a whole series of propo-
sitions in this new geometry, each of these authors fell into error and deluded
himself into thinking he had found a contradiction.

What a small step of the imagination, with what great consequences, was the
transition to the third period! All it required was to think, yes it is possible to
have a geometry in which the parallel postulate is false, and these are its first
theorems. This step was taken independently by Carl Friedrich Gauss (1777-
1855) in Germany, Janos Bolyai (1802-1860) in Hungary, and Nicolai Ivanovich
Lobachevsky (1793-1856) in Russia. Although Gauss was the first to realize the
existence of this new geometry, he published nothing of his researches, leaving
Bolyai and Lobachevsky each to believe that he was the inventor of this new ge-
ometry. Bolyai exclaimed, in a letter to his father, “Out of nothing I have created
a strange new universe.”

The fourth period contains the confirmation of these new geometries by pro-
viding models for the axiom systems to show their consistency. This occurred
only later, with the work of Beltrami, Klein, and Poincare.

In this and the next section we will describe some work of the second period.
Then in later sections we will give a model of the non-Euclidean geometry due
to Poincare, and a fuller axiomatic development of the theory, containing the
results of Bolyai and Lobachevsky, in a logical framework provided by Hilbert.

A geometry satisfying Hilbert's axioms of incidence, betweenness, and con-
gruence, in which we neither affirm nor deny the parallel axiom (P), will be
called a neutral geometry. This is the same as a Hilbert plane, but the terminology
emphasizes that we do not assume (P). Recall from Section 10 that the results of
Euclid, Book I, up through (1.28), with the possible exception of (I.1) and (1.22),
also hold in neutral geometry. A Hilbert plane in which (P) does not hold will be
called a non-Euclidean geometry. We have already seen one example of a non-
Euclidean geometry (18.4.3), but that one is semi-Euclidean, in the sense that
the angle sum in a triangle is still equal to 2RA (two right angles) (Exercise 18.4).
Now we will consider other geometries in which the angle sum of a triangle may
be different from 2RA.

The results of this second period are mainly due to Girolamo Saccheri
(1667-1733) and Adrien Marie Legendre (1752-1833). Saccheri's book Euclides
ab omni naevo vindicatus was published in 1733. The title “Euclid freed of every
blemish” recalls the quotation from Savile above. The first 32 propositions are
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a marvel of mathematical exposition. Unfortunately, after that his previously
impeccable rigor lapses, and he says that he has proved the parallel postulate,
because if it were false, there would be two lines having a common perpendicu-
lar at infinity, which is “repugnant to the nature of a straight line.”

Saccheri's work was perhaps before its time, because it did not receive the
recognition it deserved, and lay hidden in obscurity until the end of the nine-
teenth century. Essentially equivalent results were discovered independently
half a century later by Legendre, whose book Elements de Geométrie was first
published in 1794. It was followed by many new editions, reprints, and trans-
lations, which had a wide influence on the teaching of geometry and revitalized
interest in the question of parallels.

We start with a figure extensively studied by Saccheri, which goes back to
Clavius, in his commentary on Euclid’s (1.29), where he proposes the axiom that
we discussed earlier (Section 33). Since it was Clavius's edition of Euclid that
was recommended to Saccheri by the Jesuit mathematician Tommaso Ceva, we
may assume that Saccheri was inspired by Clavius to study this figure further.

Proposition 34.1

In a Hilbert plane, suppose that two equal
perpendiculars AC, BD stand at the ends
of an interval AB, and we join CD. (This
is called a Saccheri quadrilateral.) Then
the angles at C and D are equal, and fur-
thermore, the line joining the midpoints of
AB and CD, the midline, is perpendicular A B
to both.

Proof Given ABCD as above, let E be
the midpoint of AB and let [ be the per-
pendicular to AB at E. Since [ is the per-
pendicular bisector of AB, the points
A, C lie on one side of [, while B, D lie
on the other side. Hence | meets the
segment CD in a point F. By (SAS) the
triangles AEF and BEF are congruent. A ’ € 5
Hence the angles /. FAE and /. FBE are

equal, and AF = FB.

By subtraction from the right angles at A and B we find that the angles /. CAF
and / DBF are equal. So by (SAS) again, the triangles CAF and DBF are congru-
ent. This shows that the angles at C and D are equal, and that F is the midpoint
of CD.

The two pairs of congruent triangles also imply that the angles / CFE and
/. DFE are equal. So by definition, both of these angles are right angles.
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Remark 34.1.1

From the equality of the angles at C and D, Saccheri distinguished three cases,
which he called the hypothesis of the acute angle, the hypothesis of the right
angle, and the hypothesis of the obtuse angle, according to whether C and D
were acute, right, or obtuse. He showed that if any one of these holds for one
such quadrilateral, it holds for all. His proofs used continuity (in the form of the
intermediate value theorem), but we will show in the following propositions that
his result is also true in an arbitrary Hilbert plane.

Proposition 34.2

Let ABCD be a quadrilateral with right

angles at A and B, and unequal sides AC,

BD. Then the angle at C is greater than

the angle at D if and only if AC < BD. D

Proof Suppose AC < BD, and choose E (& €
on BD such that AC = BE. Then ABCE
is a Saccheri quadrilateral and / ACE =
/.BEC, by the previous proposition.
Now, the angle / ACD is bigger than : -
/[ ACE, and / BEC is bigger than the an- A B
gle at D by the exterior angle theorem
(L16), so we find that the angle at C is
bigger than the angle at D, as required.

On the other hand, if AC > BD, the same argument with roles reversed
shows that the angle at C is less than the angle at D. Hence we obtain the “if and
only if” conclusion of the proposition.

Proposition 34.3

Let ABCD be a Saccheri quadrilateral, let c >
P be a point on the segment CD, and let P

PQ be the perpendicular to AB. Let o be % P
the angle at C (equal to the angle at D). f# ¥

(a) If PQ < BD, then o is acute.

(b) If PQ = BD, then o is right.

(c) If PQ > BD, then o is obtuse. A @ 5

Proof Let 8,y be the two angles at P. In case (a), if PQ < BD, then PQ < AC also,
and from the previous proposition we obtain o< and o< y. Hence
200 < f+y = 2RA. Thus o is acute. The proofs of cases (b), (¢) are analogous.




308 7. Non-Euclidean Geometry

Remark 34.3.1
Once we have proved all three cases (a), (b), and (c), it follows that each one is
an equivalence, not only an implication.

Proposition 34.4

Again let ABCD be a Saccheri quadrilateral, but this time let P be a point on the line
CD outside the interval CD. Let PQ be the perpendicular to the line AB, and let o be
the angle at C (equal to the angle at D).

(a) If PQ > BD, then o is acute.
(b) If PQ = BD, then o is right.
(c) If PQ < BD, then a is obtuse.

Proof 1In case (a), assuming PQ > BD,
choose E in PQ such that BD = QE.
Draw CE and DE. Then we have three
Saccheri quadrilaterals. We will com-
pare their angles. Let «, 8,y be the top C b
angles of the quadrilaterals ABCD, 2| B €
BQDE, AQCE, respectively. Let o0 = 4
/. EDP. Then ¢ is an exterior angle of the
triangle CDE, so by (1.16), 6 > /. DCE =
o — v. On the other hand, looking at the
angles at E, we see that f > y. Now,
2ZRA=a+f+0>0a+y+o—y=20x SO
o is acute.

For case (b), when PQ = BD, then AQCP is a Saccheri quadrilateral, so by
(34.3Db) its angle, which is equal to the angle of ABCD, is right.

In case (c), when PQ < BD, the
proof is similar. Extend PQ to E with
BD = QE and join CE,DE. This gives
three Saccheri quadrilaterals, with upper
angles o, 5,y as marked. Let 0 = /. PDE. ¢ D £
Then by the exterior angle theorem « k) P
(1.16), 0 > L. DCE = y — a. Looking at E r
we see that y > 5. On the other hand, P
looking at D we see that o+ ff—0J =

2RA. So, combining these results, we L &
obtain A B

RA=0+f—-0<o+y—0< 20

Hence o is obtuse, as required.
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Remark 34.4.1
As in the previous proposition, once we have proved all three cases, they each
become equivalences, not just implications.

Theorem 34.5 (Saccheri)

In any Hilbert plane, if one Saccheri quadrilateral has acute angles, so do all Saccheri
quadrilaterals. If one has right angles, so do they all. If one has obtuse angles, so do
they all.

Proof We will give the proof only in the acute case, since the proofs in the two
other cases are identical.

Suppose ABCD is a Saccheri quadri-
lateral with acute angles, and let EF
be its midline (34.1). If A’B’C'D’ is an-
other Saccheri quadrilateral with mid- ¢’ o/
line equal to EF, then it can be moved C F P
by a rigid motion to make the midlines
coincide. Suppose AB < A’B’. We obtain
a figure as shown, with o acute. Hence,
by (34.4), BD < B'D'. Then by (34.3), o'
is acute. If AB > A’B’, we run the same
argument in the reverse order. It fol-
lows that all Saccheri quadrilaterals
with midline equal to EF have acute
angles.

Next we show that for any other segment, there exists a Saccheri quadrilat-
eral with acute angles and midline equal to that segment.

Lay off the given segment as EG on
the ray EB. Let the perpendicular to AB
at G meet CD in H. Reflect G and H in D
EF to get G, H,. Reflect F and H in AB H, F H
to get F», Hy. Now, G\GH, H is a Saccheri

n

quadrilateral with midline EF, so by the

previous argument, its angle f is acute. :

But then FF;HH; is another Saccheri [— } h p |
quadrilateral with the same acute angle A ¢, € G 3
f and midline EG. Now by the earlier

argument, every other Saccheri quadri- ._Jz

lateral with midline equal to EG has E H'?

acute angles. But EG was arbitrary, so
the theorem is proved.

Next we will show how to interpret this result on Saccheri quadrilaterals in
terms of the sum of the angles in a triangle.
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Proposition 34.6
Given a triangle ABC, there is a Saccheri quadrilateral for which the sum of its two
top angles is equal to the sum of the three angles of the triangle.

Proof Let ABC be the given triangle.
Let D and E be the midpoints of AB and
AC, and draw the line DE, which we

call the midline of the triangle. Drop A
perpendiculars BF, AG, CH to DE.

Now, AD = DB, and the vertical F H
angles at D are equal, so by (AAS) the 0 & € G

triangles ADG and BDF are congruent.
Similarly, AE = EC and the vertical
angles at E are congruent, so the tri-
angles AEG and CEH are congruent.
From congruent triangles we obtain
BF = AG = CH. The quadrilateral FHBC
has right angles at F and H, so it is a A
Saccheri quadrilateral (upside down).
The angles of the quadrilateral at B and F u
C are composed of the angles of the tri- 3 D
angle at B and C, plus angles that are
congruent to the two parts of the angle B C
at A, divided by the line AG. Hence the
angles at B and C of the quadrilateral
equal the angle sum of the triangle. It
follows that the triangle and the quadri-
lateral have equal defect.

If G happens to fall outside the interval FH, the same argument works, ex-
cept that we use differences instead of sums of angles.

o
@
[

Theorem 34.7
In any Hilbert plane:

(a) If there exists a triangle whose angle sum is less than 2RA, then every triangle
has angle sum less than 2RA.
(b) The following conditions are equivalent:

(i) There exists a triangle with angle sum = 2RA.
(ii) There exists a rectangle.
(iii) Every triangle has angle sum = 2RA.

(c) If there exists a triangle whose angle sum is greater than 2RA, then every triangle
has angle sum greater than 2RA.
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Proof (a) If there exists a triangle with angle sum less than 2RA, then the asso-
ciated Saccheri quadrilateral of (34.6) must have acute angles. By (34.5) it fol-
lows that every Saccheri quadrilateral has acute angles, and then by (34.6) again,
every triangle must have angle sum less than 2RA.

The proof of (b) is the same, where we note that a rectangle is just the same
thing as a Saccheri quadrilateral with right angles. The proof of (¢) is the same
as the proof of (a).

Definition
In case (a) of the theorem, we say that the geometry is semihyperbolic. In case
(b) we say that it is semi-Euclidean, and in case (c) we say that it is semielliptic.

Remark 34.7.1

Note that these three cases are equivalent to what Saccheri called the hypothesis
of the acute angle, the hypothesis of the right angle, and the hypothesis of the
obtuse angle. Thus all Hilbert planes can be divided into these three classes. Of
course, a Euclidean plane, or more generally any Hilbert plane satisfying (P), is
semi-Euclidean, by (1.32). On the other hand, we have seen an example of a
semi-Euclidean plane that does not satisfy (P) in Exercise 18.4.

We reserve the term hyperbolic for geometries satisfying Hilbert's hyperbolic
axiom (cf. Section 40). Those geometries will be semihyperbolic, but there are
also semihyperbolic geometries that are not hyperbolic (Exercise 39.24).

As for the semielliptic case, these were first discovered in 1900 by Dehn,
who called them non-Legendrean. The term elliptic is usually applied to geo-
metries like a projective plane in which there are no parallel lines at all. These
do not satisfy Hilbert's axioms, so fall outside our realm of inquiry. However, a
suitably small patch of a spherical geometry over a non-Archimedean field gives
an example of a semielliptic Hilbert plane (Exercise 34.14).

Definition

We say that a triangle is Euclidean if the sum of its angles is equal to 2RA. Oth-
erwise, we call it non-Euclidean. To measure the divergence of a triangle from
the Euclidean case, we define the defect of any triangle to be 2RA—(sum of
angles in the triangle). Thus é = 0 for a Euclidean triangle, J is a positive angle
for a triangle in a semihyperbolic plane, and ¢ is the negative of an angle for a
triangle in a semielliptic plane.

Lemma 34.8
If a triangle ABC is cut into two triangles by a single transversal BD, the defect of the
big triangle is equal to the sum of the defects of the two small triangles:

J(ABC) = 6(ABD) + 6(BCD).
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Proof Label the angles as shown in the
diagram. Then

O(ABD) = 2RA — 0. — 3, — 0,
O(BCD) = 2RA — f§;, — 0y — 7.

Since d; +d; = 2RA, by adding we
obtain

0(ABD) + 6(BCD)
=2RA —a—f, —f, —y=0(ABC),

as required.

The Theory of Parallels in Neutral Geometry

Given a line I and a point P not on I,
we know from (1.31) that there exists a
line through P parallel to I. If the Hilbert
plane satisfies Playfair’s axiom (P), that Q/
parallel is unique. But in the non-
Euclidean case, there may be more than _/
one parallel to [ through P. Among all
these parallels, there may be one that is
closer to I than all the others on one £
side. To make a formal definition, it
matters which end of the line we look
at, so we will phrase it in terms of rays.

We denote a ray by the symbol Aa,
where A is its endpoint, and a denotes A -
the line carrying the ray, together with //—7
a choice of one of the two directions on
the line. Two rays are coterminal if they lie on the same line and “go in the same
direction.” This can be made precise by saying that one ray is a subset of the

other. Thus if Aa is a ray and A’ is another point on the line carrying a,
we denote by A’a the corresponding coterminal ray.

Definition

A ray Aa is limiting parallel to a ray Bb if
either they are coterminal, or if they lie

on distinct lines not equal to the line

AB, they do not meet, and every ray in

the interior of the angle BAa meets the

ray Bb. In symbols we write Aa ||| Bb. 8
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It requires some work, in the following propositions, to show that this notion
is an equivalence relation. Note that we say nothing about the existence of such
limiting parallels. All the following results should be understood in the sense
that they hold whenever the limiting parallels exist. Later, in Section 40, we will
introduce the hyperbolic axiom, which postulates the existence of limiting par-
allels from any point to any given ray.

Proposition 34.9
If Aal||Bb, and if A'a, B'b are rays coterminal to Aa, Bb respectively, then
Ala|| B'D.

Proof 1t is sufficient to replace one ray
at a time by a coterminal ray. So first,
suppose that A’ is on the ray Aa. We
must show that every ray n in the inte-
rior of the angle BA'a meets the ray Bb.
Take a point P on the ray n, different
from A’. Then the ray AP lies in the
interior of the angle BAa, so by hypoth-
esis it meets the ray Bb in a point C.
Now, the ray n cuts one side of the tri-
angle ABC, so by Pasch’s axiom (B4) it
must cut another. The side AB is im-
possible, so n meets BC, which is con-
tained in the ray Bb, as required. P

Next, suppose A’ is on the line a, but
not in the ray Aa. Let A'n be a ray in A
the angle BA'a, and take a point P on
the line n, but not in the ray A’n. Then A
the ray ﬁ, after it passes through A, is
in the interior of the angle BAa, so
meets Bb in a point C. By the crossbhar 2
theorem (7.3) A'n will meet AB, and C
then by Pasch's axiom it will meet BC. A

If we replace B by a point B’ in the
ray Bb, or by a point B” on the line b
outside the ray Bb, the proof is easier. \

Any ray from A in the interior of the
appropriate angle must meet the ray ;
B’b or B"b either by the crossbar theo- B B B/
rem or by the property Aa ||| Bb.
In this proof we passed over in silence a small point, namely to show that
after replacing Aa,Bb by coterminal rays A'a, B'b, we still have satisfied the
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Pasch's axiom states that if a line enters a triangle crossing one line then it must meet one or the other of the other two lines. 
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The Crossbar Theorem shows that for any angle and a segment joining the two sides of the angle, a line passing through the vertex of the angle in its interior will intersect the segment. 
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condition that the rays A’a and B'b do not meet, and they lie on lines not equal
to A’B'. For this it is sufficient to show that if Aa||| Bb, then the lines supporting
those rays do not meet. We leave this as Exercise 34.6.

Proposition 34.10
If a ray Aa is limiting parallel to another vay Bb, then also Bb is limiting parallel
to Aa.

Proof 1If the rays are coterminal, this is trivial, so we may assume that a and b
are distinct lines. Drop a perpendicular AB’ to the line b. Then by the previous
proposition, Aa is limiting parallel to B’b, and it will be sufficient to prove B'Db
limiting parallel to Aa. In other words, changing notation, we may assume that
the angle ABD is a right angle.

We must show that any ray Bn in
the interior of the angle at B meets the
ray Aa. Suppose it does not. Drop the
perpendicular AC from A to n. Since
the angle ABn is acute, by the exterior A
angle theorem, C must lie on the ray
Bn, not on the other side of B. In the
triangle ABC, the angle at C is right,
while the other two angles are acute.

Hence by (1.19), AC < AB. (Why is the C &
angle at A acute? Because it is less than d
the angle BAa, and this angle must be R b

less than or equal to RA. Otherwise, the
perpendicular to BA at A would lie
inside the angle BAa and be parallel to
Bb, contradicting our hypothesis.)

Rotate C,n, and a around the point
A until C lands on a point C’ of AB, and
n’,a’ are the images of n,a. Then Aa’
will meet Bb, and n’ will be parallel to
b, so by Pasch’s axiom, it will meet a’.
Rotating back, we find that n meets Aa,
a contradiction.

Proposition 34.11
Given three rays Aa, Bb, Cc, if Aa ||| Bb and Bb ||| Cc, then Aal|| Cc.

Proof 1If any two are coterminal, the result follows from the previous proposi-
tions, so we may assume that they lie on distinct lines.
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Lemma 34.12

Given three rays Aa,Bb, Cc lying on distinct lines, with Aa||| Bb and Bb ||| Cc, after
replacing one by a coterminal ray if necessary, we may assume that A, B, and C are

collinear.

Proof 1If A, C lie on opposite sides of the line b, then the segment AC meets the
line b in a point B’. Replacing Bb by the coterminal ray B'b, we have A,B’,C

collinear.

If A,C lie on the same side of the
line b, we consider the angles ABb and
CBb. If these angles are equal, then
A,B,C are collinear. If they are not
equal, one must be smaller, say CBb is
smaller. Then the ray BC is in the
interior of the angle ABD, and Bb || Aa
by (34.10), so the ray BC meets Aa in a
point A’. Replacing Aa by A’a we have
A'.B, C collinear. If ABb is smaller, the
same argument works replacing C by a
point C’.

Proof of (34.11), continued By the lemma, we may assume A, B,C collinear. It
follows immediately from the hypotheses that the rays Aa, Bb, Cc are all on the

same side of the line ABC.

Case 1 If B is between A and C, take
any ray An in the interior of the angle
CAa. Since Aa ||| Bb, this ray meets Bb in
a point B’. Then B'b || Cc by (34.9), so
the continuation of that ray will meet
Cc. Hence Aal||| Cc.

Case 2 C is between A and B. In this
case a ray An in the interior of the angle
CAa meets b in a point B’. Then Cc
must meet n by Pasch's axiom.
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Case 3 A is between C and B. The proof is the same, taking into account
Cc ||| Bb by (34.10).

Remark 34.12.1

The proof of Case 2 of (34.11) actually shows a stronger result: If Aa ||| Bb, if C is
between A and B, and if Cc is any ray entirely in the interior of the angles BAa
and ABbD, then Cc is also limiting parallel to Aa and Bb.

Corollary 34.13

The relation “limiting parallel” for rays is an equivalence relation, which includes the
equivalence relation of being coterminal. We define an end to be an equivalence class
of limiting parallel rays.

Exercises

34.1 If ABCD is a Saccheri quadrilateral, show that CD > AB if and only if the angles at
C, D are acute. D

34.2 Define a Lambert quadrilateral to be a C‘
quadrilateral ABCD with right angles
at A, B,C. Show that the fourth angle
D is acute, right, or obtuse according
as the geometry is semihyperbolic,
semi-Euclidean, or semielliptic.

34.3 Let ABbe the diameter of a circle, and
let ABC be a triangle inscribed in the C
semicircle. Show that the angle at C
is acute, right, or obtuse, according as
the geometry is semihyperbolic, semi- A 0 ¢}
Euclidean, or semielliptic. -

34.4 In a semihyperbolic or a semielliptic plane, prove the (AAA) congruence theorem
for triangles: If two triangles ABC and A'B'C'have /A =/A", f B=/B', /C=
/. C', then the two triangles are congruent.

34.5 In a semihyperbolic or a semielliptic plane, show that for any line [ and any point A
not on [, there are infinitely many lines through A parallel to I. (Hint: Use Saccheri
quadrilaterals.)

34.6 In Aa and Bb are limiting parallel rays lying on distinct lines, show directly from
the definition that the lines carrying these rays do not meet.
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34.7

34.8

34.9

34.10

34.11

34.12

In a Hilbert plane satistying Dedekind’s axiom (D), show that for any point A and
any ray Bb, there exists a ray Aa from A, limiting parallel to Bb.

In the Hilbert plane of (18.4.3) show that there do not exist any pairs of limiting
parallel rays lying on distinct lines.

A

(ASAL) Given four rays Aa, Bb, A'a’,

B'b', assume that / BAa =/ B'A'a’,
AB=A'B’', and /. ABb=/ A'B'b’'. Show B
that Aa||| Bb if and only if A'a’ || B'b".

(ASL) Given Aa||Bb and A'a’||B'b', assume [ BAa=/B'A'a’ and AB= A'B'.
Then / ABb =/ A'B'b’'. We call the figure consisting of the segment AB and the
two limiting parallel rays Aa and Bb a limit triangle.

Given a limit triangle aABb, construct
its midline as follows. Let the angle bi-
sectors at A, B meet at a point C. Drop
perpendiculars CD,CE from C to a,b.
Join DE, and let ¢ be the perpendicu-
lar from C to DE.

(a) Show that Cc is limiting parallel to
Aa and Bb.

(b) Show that reflection in the line ¢
interchanges a and b. Thus ¢ plays a
role for the rays Aa and Bb similar
to the role of the angle bisector of
an angle, which interchanges the two
sides of an angle by reflection. So we
can think of C as the intersection of
the three (generalized) angle bisectors
of the limit triangle.

Show that the analogue of Pasch's

axiom (B4) holds for a limit triangle o
aABb: If 1 is a line that does not con-

tain A or B, and does not contain a ray b
limiting parallel to Aa or Bb, and if [ B

meets one side AB, Aa, or Bb, then it

must meet a second side, but not all ,(

three.
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34.13 Spherical geometry. Let F be a Euclidean ordered field. In the Cartesian 3-space over
F consider the sphere of radius r given by the equation x* + y* + z* = r%. We can
make a geometry, called spherical geometry, as follows. Our s-points are the points
of F3 on the surface of the sphere. Our s-ines are great circles on the sphere, that is
to say, the intersections of the sphere with planes of F* passing through the origin
O = (0,0,0). On any piece of an s-line that is less than half of a great circle, we can
define betweenness by projecting the points from O into any plane. We say that
two segments of s-lines are congruent if the chords joining their endpoints, as line
segments of F? inside the sphere, are congruent. We say that angles are congruent
if the projected angles on the tangent planes to the sphere at their vertices are
congruent.

Which of Hilbert's axioms hold in this geometry? You will see right away that
(11) fails and betweenness does not make very good sense, so it is not a Hilbert
plane. Show, however, that the congruence axioms (C1)-(C6) and (ERM) do hold.

34.14 (a) Now suppose that we take F to be a non-Archimedean field, such as the one in

(18.4). Let t be an infinite element in F, take the sphere of radius ¢, and take our
geometry Iy to consist of only those points on the surface of the sphere that are at
finite distance from a fixed point A on the sphere. Show that this geometry satisfies
all of Hilbert's axioms, so it is a Hilbert plane. Show also that the sum of the angles
of any triangle in this geometry is greater than two right angles. This is an example
of a semi-elliptic Hilbert plane.
(b) Again take F to be a non-Archimedean field, and let I1; be the set of points on a
sphere of radius 1 whose distance from a fixed point A is infinitesimal. Show that
I1; is another semielliptic Hilbert plane, and show that I1, is not isomorphic to the
plane I, of part (a). Hint: cf. Exercise 18.6.

34.15 In any Hilbert plane, show that the three angle bisectors of a triangle meet in a
point.

34.16 In any Hilbert plane, if two of the perpendicular bisectors of the sides of a triangle
meet, then all three perpendicular bisectors meet in the same point.

34.17 We say that two lines in a Hilbert plane are strictly parallel if every transversal line
makes equal alternate interior angles. Show that the following conditions are
equivalent:

(i) The plane is semi-Euclidean.

(i) For every point P and every line [, there exists a unique line m through P
strictly parallel to 1.

(iii) There exists at least one pair of distinct strictly parallel lines.

34.18 Show that strictly parallel lines (Exercise 34.17) behave in many of the same ways
as parallel lines in Euclidean geometry:
(a) If I is strictly parallel to m, and m strictly parallel to n, then [ is strictly parallel
to n (analogue of (1.30)).

(b) If both pairs of opposite sides of a quadrilateral are strictly parallel, then oppo-
site sides and opposite angles are equal (analogue of (1.34)).
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34.19 In a semi-Euclidean plane, show that if two of the altitudes of a triangle meet, then
all three altitudes meet in the same point.

34.20 In a semi-Euclidean plane, show that the medians of a triangle all meet in a point.

34.21 In any Hilbert plane, show that the line joining the midpoints of two sides of a tri-
angle is orthogonal to the perpendicular bisector of the third side.

35 Archimedean Neutral Geometry

If we add Archimedes' axiom to the axioms of neutral geometry, we have the
remarkable fact that the angle sum of a triangle is always less than or equal to
two right angles. In other words, the semielliptic case is impossible. Saccheri's
proof of this result uses a continuity argument, so we prefer the method of
Legendre, using a repeated application of the construction Euclid used in (1.16)
for the proof of the exterior angle theorem. In either case, the proof makes
essential use of Archimedes’ axiom. To begin with, we show that the analogue of
Archimedes’ axiom holds for angles.

Lemma 35.1
In a Hilbert plane with (A), let a, f be given angles. Then there exists an integer n > 0
such that noa > f3, or else no. becomes undefined by exceeding 2RA.

Proof First we make a reduction. Given
the angle f at O, measure off equal seg-
ments OA and OB on the two arms, and A

draw AB. The line OC joining O to the

midpoint of AB will bisect the angle f C
and will make a right angle at C.

Since it is just as good to prove the [)
lemma for %/J, we reduce to studying o
the case of an angle contained in a right
triangle.

So now let OAB be a right triangle
with the angle f at O and a right angle
at A. Suppose, by way of contradiction,
that no < f for all n. Lay off the angle «
inside the triangle, and let that angle
cut off a segment AA, on the line AB.
Again lay off the angle « at O to cut a
segment A} A; on the line AB. Continu-
ing in this manner, we obtain a se-
quence of points A;, Ay A3, ... on AB,
with each successive segment A;A;
subtending an angle « to O.
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