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So we proceed as follows: Bisect O3E using G,H (3 steps), and get K. Draw
the circle with center K, radius KE (1 step), and let it intersect y; at L. Draw the
circle I' with center E through L (1 step). Then I" will be orthogonal to y4, and so
will be left fixed by circular inversion in I'. Let I' meet y, in M, N, and draw the
line [ = MN (1 step). Let I' meet y| in P,Q, and draw the line m = PQ (1 step).
Thus we have transformed y/. 7,75 into I, m, and y;, and we have the new prob-
lem of finding a circle tangent to these three. Furthermore, since y| and y, were
tangent to O, their transforms I, m do not meet. In other words, [ and m are par-
allel, so we have a case of (38.6) treated above. This portion of our construction
was 7 steps.

Now perform (38.6) to find a circle ¢ tangent to I, m, y;, and let the points of
tangency be R, S, T (9 steps). Actually, since we already have a line O, 0, per-
pendicular to [ and m, we can get the midline in 3 steps instead of 6, thus saving
3 steps. So this part of the construction counts 6 steps.

The last stage of the construction is to transport back ¢ by the circular
inversion in I' to get a circle tangent to y{,75,75. Then for the same center we
can draw the desired circle t tangent to y,,7,, 7.

It is actually sufficient to pull back two of the points of tangency. Draw ER
and let it intersect y; at U (1 step). Then U is the inverse of R in I. Draw ET and
let it meet ), at V (1 step). Now U, V are two of the points of tangency of a circle
(dotted) tangent to y{,75.75. To find its center, draw O,U and O,V and let them
meet at X (2 steps). Now the circle t with center X and radius XY is the desired
circle (1 step). This last part of the construction is 5 steps. (In the drawing I also
found the inverse Z of § and drew O3Z to check for accuracy, but this is not
really part of the theoretical construction.) Total: 27 steps.

Exercises

Carry out the following ruler and compass constructions.

38.1 PLC. Treat as a special case of LCC.

38.2 LLC. Follow hint given earlier in text.

38.3 PCC. Treat as a special case of CCC.

38.4 LCC. Use a technique similar to the one we used for CCC to reduce to (38.6).

38.5 PPC. Do the general case, where the perpendicular bisector of AB does not meet .

38.6 Describe how you would construct all eight solutions to the problem of Apollonius.

39 The Poincare Model

In this section we will show the existence of a non-Euclidean geometry, and
hence the consistency of the axioms of non-Euclidean geometry, by exhibiting a
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model for a non-Euclidean geometry. Ironically, our model of a non-Euclidean
geometry will be constructed within the logical framework of Euclidean geome-
try. So what we must do is to give an interpretation of the undefined notions of
geometry in the model: point, line, betweenness, and congruence for line seg-
ments and angles, and then we must prove that the axioms all hold in this
interpretation.

Our starting point will be the Carte-
sian plane Il over a Euclidean ordered
field F. In this plane we fix a circle I’
with center O. (For a weakening of the
Euclidean hypothesis on F, see Exercises
39.25 )

The points of our model (which we
will call P-points) will be the set of points
of Il inside I", not counting the points on
I. A P-line will be the set of all P-points
lying on a circle y that is orthogonal to
I, or that lie on a line through O. (To
keep our language straight, the words
point, line, circle will refer to the Eucli-
dean notions in I, and we will prefix a P
to any word to mean the corresponding
concept in the model we are building.)

Having thus defined the P-points and P-lines of our model, we can verify the
incidence axioms (11), (12), (13).

Proposition 39.1
The P-model satisfies (11), (12), and (13).

Proof For (I1), suppose we are given
two P-points, A, B. If the line AB passes
through O, then it is a P-line containing
them and is the only such. If A, B, and O
are not collinear, let A’ be the inverse of
A under inversion in the circle I' (cf.
Section 37). Then there is a unique
circle y passing through A,A’, and B.
By (37.3), y is orthogonal to I, so that
portion of y that is inside I" becomes a P-
line containing A and B. It is unique,
because again by (37.3), any circle y
orthogonal to I' that contains A also
contains A'.
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The other two axioms (12), existence of at least two points on a line and (13)
existence of three noncollinear points, are obvious.

We see immediately that this geometry will be non-Euclidean because the
parallel axiom (P) does not hold.

Proposition 39.2

The parallel axiom (P) does not hold in the
P-model: There is a P-line y and a P-point
A such that there is more than one P-line
through A that is P-parallel to y. (Of course,
P-parallel means that two P-lines do not
intersect.)

Proof Take a P-line y in one part of our
P-plane and take a point A far away. Let
A’ be the inverse of A. Then (by 37.3)),
any circle through A and A’ will be or-
thogonal to I'; so it gives a P-line passing
through A. There are many of these
that do not meet y, and these are all P-
lines through A that are P-parallel to y.

Definition

If A,B,C are P-points on a P-line 7y,
we define the P-betweenness relation
A % B = C as follows. Let O’ be the center
of y (which is always outside I'), draw
the line PQ, and project the points
A,B,C to points A", B’, C' € PQ from the
point O'. Then we will say A = B = C (P-
betweenness) if and only if A’+ B’ = C’
on the line PQ (usual betweenness). If
A, B,C lie on a P-line that is an ordinary
line through O, we take the usual notion
of betweenness.

Proposition 39.3
The notion of P-betweenness for P-points satisfies axioms (B1)—(B4).

Proof Axioms (B1), (B2), and (B3) follow immediately from the corresponding
statements for ordinary betweenness on the line PQ. For (B4), taking into
account the circle-circle intersection property (E) in Il and noting that two cir-
cles orthogonal to I' can meet at most once inside I', we see that to say that P-
points A, B are on the same P-side of a P-line y is equivalent to saying that A, B as
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ordinary points are either both inside y or both outside y. Thus we can define the
inside of a P-triangle, and (B4) is clear.

Definition

We define congruence in our P-model as
follows. Two P-angles are P-congruent if
the Euclidean angles they define are
congruent in the usual sense. For line
segments, we proceed as follows. Given
two P-points, let the P-line joining them
be the circle y orthogonal to I'. Let y
meet I’ in two points P,Q, and label
them so that P is the one closer to A.
For another pair of points A’,B’ lying
on a P-line y', label P',Q" similarly.
Then we say that the P-segment AB is
P-congruent to the P-segment A’B’' if
the cross-ratio (AB,PQ) is equal to the
cross-ratio (A'B', P'Q’) (cf. Section 37 for
cross-ratios).

Now the real work begins, to verify the congruence axioms. We start with
the easy ones.

Proposition 39.4
P-congruence satisfies axioms (C2)-(C5).

Proof (C2) is obvious from the definition, since congruence of segments is
defined by equivalence of associated quantities in the field.

(C3) requires a calculation. From the definition of cross-ratio it follows that
(AB,PQ) - (BC,PQ) = (AC,PQ) (verify!). So when two segments are added to-
gether, the associated cross-ratios multiply. From this (C3) follows immediately.

To prove (C4), laying off angles, first
suppose that we are given a point A A
inside I' and a line m through A. Let A’ '
be the inverse of A. Then there exists a ‘
unique circle y passing through A and ‘

A" and tangent to the line m. By (37.3) y

is orthogonal to I'. This shows that there

exists a P-line at A with any given tan-

gent direction. Now, if an angle « is

given and a P-line 0 given at A, by (C4)

in I there is a unique line m forming the angle o with 0 at A (and on a given
side of 9). Then the P-line with tangent m gives the required P-angle at A, and is
unique.
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(C5) follows from the same statemnt for Euclidean angles, because congru-
ence of angles is the same.

Before proceeding to a discussion of the remaining axioms (C1), (C6), (E),
(A), and (D), we will establish the existence of rigid motion (ERM) in this
model. Recall from Section 17 that a rigid motion is a transformation of the ge-
ometry that preserves the undefined notions of point, line, betweenness, and
congruence. In our case, a P-rigid motion will be a transformation of the set of
points inside I' that is 1-to-1 and onto, sends P-lines to P-lines, and preserves P-
betweenness and P-congruence of angles and segments.

Proposition 39.5 (Existence of rigid motions (ERM) for the Poincare model)
There are enough P-rigid motions of the Poincare model so that:

(1) For any two P-points A, A’, there is a P-rigid motion sending A to A’.

(2) Given P-points A,B,B'J’)lerc is a P-rigid motion leaving A fixed and sending
the ray AB to the ray AB'.

(3) For any P-line y there is a P-rigid motion leaving all the points of y fixed and
interchanging the two sides of 7.

Proof We start with the last property.
Given a P-line y, let p, be the circular
inversion in y. Since I' is orthogonal to
75 Py sends I to itself (37.3). Also, the
inside of I' is sent to the inside of I, so
that the P-plane is mapped to itself, in a
way that is clearly 1-to-1 and onto. Since
circular inversion sends circles into cir-
cles (37.4) and is conformal (37.5), a
circle orthogonal to I' will be sent to
another circle orthogonal to I', in other
words, p, sends P-lines into P-lines.
(Note that this works also for the limit- 0
ing case of a line through O, which is
also orthogonal to I.)

Circular inversion clearly preserves betweenness (Exercise 39.1). It pre-
serves P-congruence of angles because this is the same as usual congruence
of angles, and inversion is conformal (37.5). Also, p, preserves P-congruence of
P-segments, because this is defined by the cross-ratio, which is invariant under
circular inversion (37.6). Finally, note that p, interchanges that part of the P-
plane that is inside y with that part that is outside y, so p, is a P-rigid motion as
required for the third statement of (ERM). Since it leaves the points of y fixed
and interchanges the sides of y, it is the P-reflection in y (Section 17).
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Next we will show that for any
A # O, there is a circle y orthogonal to I’ P
(a P-line) such that the P-reflection in y
interchanges O and A. Let A’ be the in- &
verse of A; let y be the circle with center y
A’ that is orthogonal to I'. Then the 0 A A

construction (37.1) for the circle y, us-

ing the same diagram (!), shows that in- ¥
version in y sends A to O. Thus the P- A
reflection in y interchanges A and O. Q

Now, since a composition of P-rigid motions is again a P-rigid motion, given
two points A, A’, we can first send A to O as above, then send O to A’. The com-
position of these two reflections will be a P-rigid motion sending A to A’, which
proves (1).

Now suppose that we are given three points A, B, B'. Let p be a P-rigid motion
taking A to O, and let p(B) = C, p(B") = C'. If we can solve problem (2) for
0,C,C’, in other words, if there is a P-rigid motion # leaving O fixed and sending
the ray OC to the ray O_C", then p~'0p will solve the problem (2) for A,B,B’. So
we reduce to solving the problem for O, C, C'.

Let I be the angle bisector of angle
COC'. Then [ is a line through O, which
is also a P-line. The ordinary reflection
in [ is clearly a P-rigid motion _t}hat
leaves O _ﬁ}’(ed and sends the ray OC to
the ray OC".

T’,

This completes the proof of (ERM) for the Poincaré model.

Proposition 39.6
Axioms (C1) and (C6) hold in the Poincare model.

Proof Suppose it is required to find a point B’ on a P-ray emanating from a
point A" such that A’B’ is P-congruent to a given P-segment AB. By (ERM) =
(39.5), there is a P-rigid motion ¢ taking A to A’. There is also a P-rigid motion
¥ taking the ray go(f—ig) to the given ray from A’. Then B’ = yip(A’) is a point
on the given ray, and AB = A’B’ because rigid motions preserve congruence.
Thus (C1) holds in the Poincaré model.

To show that (C6) holds, since we have already established (C1)-(C5), we
simply apply (17.1), which shows that under those circumstances, (ERM)
implies (C6).
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In order to discuss (E) in the Poincare model, we first need to identify what
is a P-circle. By definition, of course, it is the set of all P-points B’ such that the
P-segment A’B’, for a certain fixed point A’, is P-congruent to a given P-segment
AB. Since the definition of P-congruence of segments is not very intuitive, it is
not easy to see immediately what kind of curves these are. First we need a
lemma.

Lemma 39.7

If C,C" are two points inside I, not equal to the center of ', O, then the P-segment OC
(which is equal to the Euclidean segment OC, since the P-line joining O and C is just
the usual line OC) is P-congruent to the P-segment OC’ if and only if OC is congruent
to OC’ in the ambient Euclidean plane 11.

Proof Let P and Q be the endpoints of the diameter of I" passing through O and
C. Then the P-congruence of OC is determined by the cross-ratio

_opP _cp
T 0oQ  cq’

Let r = radius of I' and let x = Euclidean distance from O to C. Then the cross-
ratio is

(0C,PQ)

¥ . r+x r—x

r or—x r4x

If C’ is another point, and if the distance from O to C’ is y, then we obtain
similarly

r-y

r+y

(OC’, P’Q’) _

Thus, to say that OC is P-congruent to OC’ is to say that

r—-x r—y
r+x r4+y’

Cross multiplying, we obtain

7'2—rx-+—ry—xy=r2+rx—ry—xy,

S0
2rx = 2ry.

Since our field has characteristic 0, this is equivalent to x = y, i.e., OC is con-
gruent to OC’ in the usual sense.

Proposition 39.8

Every P-circle is an ordinary circle that is entirely contained in the inside of ', and
conversely, every circle entively inside 1 is a P-circle. (Warning: The P-center of a P-
circle is usually not equal to its ordinary center.)
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Proof Given a P-circle { with P-center A’, consider a rigid motion @ that takes A’

to O. This will transtorm { into a P-circle with P-center O. Since P-congruence

and ordinary congruence are the same for segments beginning at O by the

lemma, this image 0(() is an ordinary circle with center O. Then 0~ will carry

this ordinary circle back to the given P-circle {. Now observe that in the proof

of (ERM), all the rigid motions we needed were made out of compositions of P-

reflections (which are circular inversions in suitable circles) or reflections in a

line through O. Since all of these transformations send circles into circles (37.4),

it follows that { is a circle. Since the transformed circle was a circle around O

entirely contained inside I', the image is also entirely contained inside I'.
Conversely, given an ordinary circle

{ completely contained inside I', with s

(ordinary) center O, draw OO'. Let it

meet { at A, B. P-bisect the segment AB

at A’, and choose a P-reflection p, that

sends A" to O. Then p,({) will be a cir-

cle, the images of A and B will be equi-

distant from O, and this circle will be

symmetric about the line [ = OO’, which

is sent into itself by p,. Hence p,({) is a

circle with center O, which is also a P-

circle. Applying p', it follows that the

original circle { is a P-circle with P-

center C.

Proposition 39.9
The circle-circle intersection property (E) holds in the Poincare model over a
Euclidean ordeved field F.

Proof Since P-lines and P-circles are all either usual circles or lines through O,
and since betweenness is the same in the P-model as in the ambient Euclidean
space, (E) in the P-model follows directly from (E) in the Cartesian plane 1, and
this in turn follows from the Euclidean hypothesis on F (16.2). Since P-circles are
usual circles entirely contained inside I', there is no problem about any of the
intersections falling outside I'.

For the next proposition it will be convenient to introduce the notion of a
distance function. In ordinary Euclidean geometry the distance function assigns
to each interval a positive number, and adding segments corresponds to adding
numbers. More generally, we make the following definition.

Definition
A distance function on a Hilbert plane is a function d that to each segment assigns
an element of an ordered abelian group G such that
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(1) d(AB) > 0 for any segment AB.
(2) d(AB) = d(A'B’) if and only if AB =~ A’B’.
(3) if A= B=*C, then d(AC) = d(AB) + d(BC).

If the group happens to be written multiplicatively, we will call it a multiplicative
distance function. The usual distance function on the Cartesian plane over a
field F (Section 16) is an additive distance function with values in the additive
group of the field (F, +)

Lemma 39.10
In the Poincare model over a field F, the function u(AB) = (AB,PQ)_l is a multi-
plicative distance function with values in the multiplicative group of the field (F-g, -).

Proof Because of our convention that P is the endpoint closer to A, the cross-
ratio (AB,PQ) is in the interval (0,1) in F. Therefore, u(AB)>1. We
have already used it to define congruence, and we have seen that it is multi-
plicative (proof of 39.4). Hence p is a multiplicative distance function.

Proposition 39.11

Archimedes’ axiom (A) will hold in the P-model if we assume Archimedes’ axiom (A')
for the field F. Similarly, Dedekind's axiom (D) will hold if we assume (D') in the
field. (Cf. (15.4) for (A’) and (D’).)

Proof Using the multiplicative distance function z of (39.10), Archimedes' axiom
in the P-plane is equivalent to the following statement in F: Given c¢,d € F,
¢,d > 1, In > 0 such that ¢" > d.

We will show that this property is a consequence of Archimedes’ axiom (A")
for F. Write ¢ = 1 + x, so x € F,x > 0. Then

¢" = (1+x)" =1+ nx + positive terms > 1 + nx.

Now (A’) says that for some n,nx > d. Hence also ¢" > d, as required.

For Dedekind’s axiom, (D) in F implies (D) in II (15.4), and this clearly
implies (D) in the P-plane because of the way we defined betweenness by pro-
jecting onto a line segment. (For a converse to (39.11), see Exercise 39.7.)

Proposition 39.12
For any point A and any ray Bb in the Poincare model, there exists a limiting parallel
ray (cf. Section 34) Aa to Bb.

Proof Let the P-ray Bb meet the defining circle I' of the Poincaré model in a
point Q. Let A’ be the circular inverse of A in I', and let y be the circle through
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A,Q,A’. Then y defines a P-line, and we take Aa to be the P-ray of that P-line
having Q at its end. Then it is clear that Aa and Bb are limiting parallel rays in
the Poincaré model.

Using a little Euclidean geometry in the ambient Cartesian plane, we can
derive a marvelous relationship between the length of a segment and the angle
it makes with a limiting parallel.

Proposition 39.13 (Bolyai's formula)
Suppose we are given in the Poincare
model a point P, a line I, the perpendicular

PQ to I, and a limiting parallel line m, P
making an angle o with PQ . 2
Then
L -1 w
tan 2 = u(PQ) ™",
where the tangent is understood to be of 0] A

the corresponding Euclidean angle, and u
is the multiplicative distance function. The
equality takes place in the field F.

Proof We may assume that the Poincaré model is made with a circle I' of radius
1 (cf. Exercise 39.23). We can move P, Q, [, m so that Q becomes the center of I',
the line [ becomes a radius QA, and P lies on an orthogonal radius QB. The lim-
iting parallel through P to [ will be part of a circle A, orthogonal to I at A. Its
center therefore is at a point C = (1,¢) on the line x = 1. Let P be the point (0, y).
Then CP = CA, so

Therefore,

= . 1
c="y (1)
Draw a diameter EF of A parallel to the x-axis. Then the angle o between our
limiting parallel and PQ, called the angle of parallelism of the segment PQ, is
equal to the angle PCF. If we draw EP, then the angle PEF = /2 (111.20). Now

o c—y
tan = = DP/DE = .
ansy / c+1
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Substituting from (1) we obtain

tan 2=1"Y
an2—1+y.
{F |p c e\
Py d
B
A
P P
h
R A 1
G

On the other hand, the multiplicative distance function is

u(PQ) = (PQ,BG)™
_ (B . QB
T \PG T QG

_(lmy 1\
S \l+y 1
14y

1=y
From (2) and (3) we conclude that

tan % = ,u(PQ)_l,
as required.

Remark 39.13.1

365

From this it follows that given any angle o less than a right angle, there exists a
segment PQ with angle of parallelism equal to «. Indeed, tan(o/2) will be an el-
ement of the field F, and then we can find a y e F satisfying (2) above. In par-
ticular if we take o :% RA (one-half right angle), there will be a corresponding
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segment PQ uniquely determined up to congruence. In this sense there is an
absolute standard of length in the Poincare model, whereas in Euclidean geom-
etry the choice of unit length is arbitrary.

Exercises

All exercises take place in the Poincaré model over a Euclidean ordered field F, unless
otherwise noted. Proofs should be based on the Euclidean geometry of the Cartesian
plane over F. In particular, do not use any of the results of Section 34 or Section 35 that
depend on Archimedes’ axiom.

39.1 Verify that circular inversion preserves betweenness in the Poincaré model (cf.
proof of Proposition 39.5).

39.2 Show that the angle sum of any triangle in the Poincaré model is less than 2RA so
this geometry is semihyperbolic (Section 34).

39.3 For any angle o, show the existence of a line entirely contained inside the angle o
(ct. Exercise 35.4).

39.4 Show that for any angle o < 60° there exists an equilateral triangle with all of its
angles equal to «.

39.5 If an equilateral triangle has sides equal to AB and angles equal to o, show that

2a 22
1+a2 1—1t27

where a = u(AB) is its multiplicative length, and where ¢t = tan(«/2) (cf. Example
42.3.2).

39.6 Given any three angles o, ff,y with
o+ f+ 7y < 2RA, show that there ex-
ists a triangle with angles «, 8,y in the
Poincaré model. Hint: First show in
the Cartesian plane that you can find (1
an angle « meeting a circle at angles f
and y. Then shrink or expand this fig- (el ¥
ure so that it becomes a triangle in the T
Poincaré model.

39.7 Prove the converse of Proposition 39.11, namely, if (A) or (D) holds in the Poincaré
model, then (A") resp. (D) holds in F.

—_—

39.8 If two lines are parallel, but not limit- T‘//
ing parallel, then they have a unique
common orthogonal line. 2]
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39.9 For any angle o, there is an enclosing
line, which is a line limiting parallel to
both arms of .

39.10 Give an alternative proof of (C1) in
the Poincaré model, without using
rigid motions, as follows. Given a
point A, a P-line y, and given a quan-
tity be F, 0 < b < 1, we need to find a
point B € y such that

(AB,PQ) = b.

Do this by showing that in Euclidean
geometry, the locus of points B such
that BP/BQ is a given ratio ke F is a
circle. Then use (E), in the Cartesian
plane, to show that this circle inter-
sects y and thus find the required B.

~
©
o

39.11 Given the circle I, its center O, and another circle { entirely contained inside I,
give a ruler and compass construction (in the ambient Euclidean plane) of the P-
center { regarded as a P-circle (cf. Proposition 39.8).

39.12 (Euclidean geometry). Find all possi- A
ble ways of filling the entire Euclidean s, -
plane with triangles satistying the fol-
lowing conditions:

(a) The triangles are all congruent to
ecach other. There is no overlap, and
they fill the entire plane. '

%

(b) At each vertex of the triangula-
tion, all the angles are the same
(though they may be different from
the angles at a different vertex).

We consider two “ways” of filling the plane “the same” if one can be moved to
the other by a dilation followed by a rigid motion.

One such triangulation is shown, where the angles at each vertex are all 60°.
This is the only possibility if all angles are equal. Expect to find three more ways,
allowing angles at different vertices to be different, and prove that you have found
all possibilities.

-
)
-~
L4
-
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39.13 In the Poincaré model of non-Euclidean geometry, show, in contrast to the Eucli-
dean situation described in Exercise 39.12 above, that there are infinitely many
different ways to cover the P-plane by congruent P-triangles satistying properties
(a) and (b).

In particular, prove that the plane can be covered by equilateral triangles with
all angles equal to 45° and with eight meeting at each vertex. If AB is a side of one
of these triangles, find u(AB).

Draw a big circle I' on a piece of paper, and then accurately draw enough of
these P-triangles inside I' to show how they cover the whole P-plane. (This drawing
can be accomplished entirely by ruler and compass, but don't bother listing the
steps, except to show how you got the first triangle.)

Congruent, isosceles, 72°-45°-45° triangles, filling up the Poincaré model of
the non-Euclidean plane (cf. Exercise 39.13).

39.14 In the Poincaré model made inside a circle I' in the Cartesian plane over F, we
have seen that any Euclidean circle p entirely contained inside I' is a P-circle
(Proposition 39.8).
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39.15

39.16

39.17

(a) If y is a Euclidean circle inside I’
and tangent to I, show that there is a
pencil of limiting parallel lines (a pen-
cil means the set of all lines that are
mutually limiting parallels at one end)
such that the curve y is orthogonal to
all the lines of the pencil. Such a
curve is called a horocycle in the Poin-
caré model.

(b) If y is a Euclidean circle that cuts
I' at points P,Q, let [ be the P-line
having the endpoints P, Q. Show that
the points of y inside I' form a curve
of points equidistant from the P-line [.
Such a curve is called an equidistant
curve or hypercycle.

(c) Given any three distinct points A, B, C in the Poincaré model, show that they
are contained in a unique P-line or P-circle or horocycle or hypercycle. (Contrast to
Euclidean geometry, where only the first two possibilities occur.)

Show in the Poincaré model that it is in general not possible to trisect an angle (i.e.,
if « is an angle, the angle {1« may not exist) (cf. Section 28).

Show in the Poincaré model, in contrast to the Euclidean case (Exercise 2.14), that
it is in general not possible to trisect a line segment (i.e., the 3-division points may
not exist).

In the Poincaré model, show that if
two altitudes of a triangle meet in a
point, then the third altitude also
passes through that point. Here is a
method. Let the triangle be ABC, and
suppose that the altitudes from A and
B meet. By a rigid motion of the Poin-
caré plane we move that meeting
point to the center O of the defining
circle I'. Then those altitudes become
Euclidean lines through O. We must
show that the line OC is orthogonal to
the side AB.

The P-lines AB, AC, BC are Euclidean circles orthogonal to I'. Let D, E, F be the
centers of these circles. Show that the altitudes of the P-triangle ABC are at the
same time altitudes of the Euclidean triangle DEF. Then use the Euclidean theo-
rem that the altitudes of a triangle meet (Proposition 5.6) to finish the proof.
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Note: This is a curious method, whereby the Euclidean result is used to show
(via Euclidean geometry) that the same result holds in the non-Euclidean Poincare
model. Since we now know that this result holds in both Euclidean and non-Eucli-
dean geometry, it would be nice to have a single proof in neutral geometry that
applies to both cases—cf. Exercise 40.14 and Theorem 43.15.

39.18 Show that the result of Exercise 1.15 is also valid in the Poincaré model, by moving
the figure so that P becomes the center of I' and using the Euclidean result already
proved. Can you find a proof in neutral geometry that will cover both cases at
once?

A

39.19 Prove a non-Euclidean analogue of
(111.36) in the Poincaré model, as fol- [

lows. Let P be a point outside a circle
7. let PA be a tangent to y, and let PBC
be a secant. Let a = u(PA), b = u(PB),
and ¢ = u(PC). Then
a—lz_ b—1\[c—-1
<a+ 1) B (b+ 1) (c+ 1)'

Hint: Move P to the center O of the Poincaré model, use the Euclidean (111.36) —cf.
Proposition 20.9 —and compute g as in the proof of Proposition 39.13.

39.20 In the Poincaré model, if three circles
each meet the others in two points,
show that the three radical axes (Ex-
ercise 20.4) meet in a point.

(a) One method is to suppose that two
of the radical axes meet in a point A.
Move that point to O, and use the Eu-

clidean result (Exercise 20.5). e

(b) Another method is to use Exercise 39.19 to define the power of a point with re-
spect to a circle, and imitate the proofs of Exercises 20.4, 20.5.

39.21 There is another model of a non-
Euclidean geometry, due to Felix
Klein, constructed as follows. In the
Cartesian plane over a field F, fix a
circle A. Then the K-points are the
points inside A, and the K-lines are 0
chords of Euclidean lines contained
inside A. In this model the incidence
axioms (I1)-(13) and the between- A
ness axioms (B1)-(B4) are immediate,
taking betweenness to be the same as
in the Cartesian plane.
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39.22

39.23

39.24

However, the model is not conformal (i.e., angles are not the same as Eucli-
dean angles), so the definition and properties of congruence for line segments and
for angles are more complicated. Rather than doing this directly, we will show in
this exercise how to obtain the Klein model from the Poincaré model.

Let A be a circle of radius 1 centered at the origin, and in the Cartesian 3-space,
place a sphere of radius 1 on the plane, with its south pole at the origin (cf. Exer-
cise 37.1). Let I' be the circle of radius 2 centered at the origin. For each K-point
inside A, project it straight up to obtain a point of the southern hemisphere of the
sphere, and then use the stereographic projection (Exercise 37.1) from the north
pole to obtain a P-point inside I'.

Show that this transformation gives a 1-to-1 correspondence between the points
of the K-plane inside A with the points of the P-plane inside I', which sends K-lines
to P-lines and vice versa. Then we can transport the notions of congruence for P-
segments and P-angles to the K-plane, so that the K-plane becomes a model of a
non-Euclidean Hilbert plane, isomorphic to the Poincaré model.

If ABC is a triangle having a circum-
scribed circle, prove that the medians
of ABC meet in a point, as follows.
Use the Klein model (Exercise 39.21)
and place the center of the circum-
scribed circle at the center O of the
circle A. Then the perpendicular
bisectors of the sides of ABC become
diameters of the circle A. Conclude
that the K-midpoints of the sides of
the triangle are equal to the Euclidean
midpoints, and then use the Euclidean
theorem about medians in the ambi-
ent plane.

In the Cartesian plane over the field F, let I be a circle of radius r centered at the
origin, and let I'" be a concentric circle of radius »'. Consider the map ¢ from the
set of points inside I to the set of points inside I'' given by

x' = kx,

Yy =ky,
where k= r'/r. Show that ¢ gives an isomorphism of the Poincaré model made
with I' to the Poincaré model made with I'', which preserves the multiplicative
distance function of Lemma 39.10. Conclude that if I' and I'’ are any two circles in

the Cartesian plane over F, the associated Poincaré models are isomorphic Hilbert
planes.

Let I be a non-Archimedean Euclidean field such as the one described in Proposi-
tion 18.4. Let Il be the Poincaré model over F and let 11 be the subset of points that
are at finitely bounded multiplicative distance g from some fixed point O. Show
that 11, is a non-Euclidean Hilbert plane with properties (a) and (b) below.
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39.25

39.26

39.27

39.28

39.29

7. Non-Euclidean Geometry

(a) The angle sum of any triangle is less than 2RA, so it is semihyperbolic.
(b) Limiting parallel rays on distinct lines do not exist.

(c) Let I} be the subset of those points of Il whose distance from O is in-
finitesimal. Show that I, is another Hilbert plane satistying (a) and (b) above.

(d) Show that Ily and I1; are not isomorphic Hilbert planes.
Compare Exercises 18.3-18.6.

In this and the following exercises we investigate the Poincaré model over a field
that need not be Euclidean. Let F be a Pythagorean ordered field, let d € F, and let
I' be the circle x2 + y? = d, which may be a virtual circle if V/d ¢ F (Exercise 37.17).
We define the Poincaré model in I as in the text. The interior of I is the set of points
(%, y) with x* + y? < d. These are the P-points. The P-lines are segments of circles y
orthogonal to I (which means stable under circular inversion in I' (Exercises 37.16,
37.17)) as before.

(a) Show that the incidence axioms (11)-(13) holds, as in Proposition 39.1.

(b) 1f y is a P-line, the intersection points P, Q of y with I' may not exist, but the line
PQ is still well-defined: It is the perpendicular to OO’ at the inverse of O’, where O’
is the center of y. So we can define betweenness as before. Show that betweenness
satisfies axioms (B1)-(B3) as in the text.

With hypotheses as in Exercise 39.25, now suppose that F satisfies the additional
condition (xd): For any a € F, if a* —d > 0, then Va? — d e F.

(a) Show that the circle-circle intersection property (E) holds for circles y,0 or-
thogonal to I'. Hint: Write the equations of y,d, and show that the square root
needed to find their intersection exists because of condition (xd).

(b) Conclude that axiom (B4) also holds in this model.

Continuing with the situation of the two previous exercises, if y is a P-line, the
points of intersection P, Q with I' do not exist, but at least they have coordinates in
the field F(v/d). Hence we can compute the crossratio (AB, PQ) in that field, and
define congruence of angles and segments as in the text.

(a) Using condition (xd), show that for any point A’ outside I, there exists a circle y
with center A’ and orthogonal to I'.

(b) Verity that Propositions 39.4, 39.5, 39.6 hold in this model, so it is a Hilbert
plane. We call it the Poincaré model in the (virtual) circle x* + y* = d. You will
need part (a) of the proof of Proposition 39.5.

In the model of Exercise 39.27, if Vd ¢ F, show that there are no limiting parallel
rays on distinct lines, but that any two parallel lines have a common orthogonal.

For an example of a field F satisfying the conditions of Exercises 39.25-39.28, let K
be a Pythagorean ordered field, for example the field of constructible real numbers;
let F = K((z)) be the field of Laurent series over K (Exercise 18.9); and let d = z.
Verify that d > 0, v/d ¢ F, and that F satisfies condition (xd).
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39.30 For an Archimedean example of a field as in Exercise 39.29, let F be the field of all
those real numbers that can b( expressed using rational numb(ls and a finite
number of operations +,—,-, +,a+— V1 +a? and a— Va*— pwwdcd that
a’> -2 > 0.

(a) Fisa Pythagorean ordered field, d = /2 is in F, and F satisfies condition (xd) of
Exercise 39.26 for d = /2.

(b) Let ¢: Q(v2) — R be the homomorphism that makes ¢(y/2) = —/2. Show
inductively that ¢ extends to a homomorphism ¢ of F to R.

(c) Since ¢(v/2) < 0, conclude that v/2 cannot be a square in F.

39.31 Show that in the Poincaré model in the virtual circle x? + yz = /2 over the field F
of Exercise 39.30, not every segment can be the side of an equilateral triangle, as
follows.

(a) If x € F with 0 < x and x* < /2, let AB be the segment from (0, 0) to (x,0) in the
Poincaré model, and show that

V2+x
V2-x

(b) If there is an equilateral triangle with side AB, let the angle at a vertex be o,
and let t = tan(«/2). Use Exercise 39.5 to show that

2 —x2 1 /
= \/— Y 6 — ZXZ\/Z—Y4
3V2+xr 32+

(c) Now take a suitable x, such as x = /3 — 1, and use an argument similar to the
previous exercise to show that the corresponding ¢ is not in F. Hence the equilat-
eral triangle with side AB does not exist. Hint: For these two exercises, it may be
useful to review the techniques used in Exercises 16.10-16.14.

H(AB) =

40 Hyperbolic Geometry

In the earlier sections of this chapter we have seen something of the develop-
ment of neutral geometry and the study of the angle sum of a triangle using
Archimedes’ axiom. We have also seen the Poincaré model of a non-Euclidean
geometry over a field. For the full development of the geometry of Bolyai and
Lobachevsky, we need the limiting parallels. The existence of these limiting
parallels, which we have seen in the Poincare model (39.12), does not follow in
the axiomatic treatment from what we have done so far (Exercises 39.24, 39.28).
Therefore, following Hilbert, we will take the existence of the limiting parallels
as an axiom. This axiom is quite strong. It will allow us to develop non-Euclidean
geometry independently of Archimedes' axiom. It also allows the construction of
an ordered field out of the geometry (Section 41), and a proof that the abstract






