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So we proceed as follow. Bisect 032 using G,H (3 steps), and get K, Draw

the ci :le with center K, radius KB (1 step), and let it intersect y; at L. Draw the
[‘with center E through L (1 step). Then I‘ will be orthogonal to )5, and so

will be left fixed by circular inversion in I‘. Let I‘ meet y; in M.N, and draw the
line I:MN (1 step), Let I‘ me t y; in P. Q, and draw the line m :PQ(1 step),
Thus we have transformed 11;.7‘2,i; into 1,171, and y;, and we have the new prob
lem offinding a circle tangent to these three. Furthermore, since i; and i; were

tangent to 0, their transforms I. m do not meet. In other words, I and m are par
allel, so we have a case of (38.6) treated above. This portion of our construction

was 7 steps.
Now perform (38.6) to find a circle a tangent to I, 171.)!“ and let the points of

tangency be R,S.T (9 steps), Actually, since we already have a line 0.02 per
pendicular to land 17!,we can get the midline in 3 steps instead of 6, thus saving

3 steps. So this part of the construction counts 6 steps.
The last stage of the construction is to transport back a by the circular

inversion in [‘ to get a ircle tangent to fig); yg. Then for the same center we
can draw die desired circle r tangent to y,,;r2. 7,.

It is actually sufficient to pull back two of die points of tangency. Draw ER
and let it intersect y; at U (1 step). Then Uis the inverse ofR in I‘. Draw ET and
let it meet y; at V (1 step). Now U, V are two ofthe points of tangency of a circle

(dotted) tangent to ”7;.7;. To find its center, draw 0, U and 02V and let them
meet at X (2 steps), Now die circle r widi center X and radius XY is the desired

le (1 step). This last part of the construction is 5 steps. (In the drawing I also
found the inverse z of s and drew 032 to check for accuracy, but this is not

really part of the theoretical construction.) Total: 27 steps.

(:i

Exercises

Carry out the following rul
’r and comp

381 PLC Trtzat as a s

‘ ’r‘

38 6 thscnbt: how you would construct all eight solutions to the problem of Apollonius

39 The Poincaré Model
In diis s :tion we will show the ens-tense of a noanuclidean geometry, and

hence the cunslsmncy of the axioms of noanuclidean geometry, by exhibiting a
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model for a noanuclidean geometry. ironically, our model ofa noanuclidean

geometry will be constructed within the logical framework of E 'dean geomer

try. So what we must do is to give an mtm'pmmnan of the undefined notions of
geometry in the model: point, line, betweenness, and congruence for line

ments and angles, and then we must prove that the axioms all hold in this
interpretation.

Our starting point will be the Carter
sian plane ll over a Euclidean ordered

field F. In this plane we fix a circle [‘

with center 0. (For a weakening of the
Euclidean hypothesis on F, see Exercises

39.25 (T)
The points of our model (which we

will call Pall/Joints) will be the set ofpoints
of II inside [‘, not counting the points on

[‘. A [”1an will be die set of all Pepoints

lying on a circle y that is orthogonal to

I‘, or that lie on a line through 0. (To
keep our language straight, the words

point, line, circle will refer to the Euclir
dean notions in II, and we will prefix a P

to any word to mean the corresponding
concept in the model we are building.)

Having thus defined the Ppoints and Felines of our model, we can verify the
incidence axioms (11), (12), (i3).

Proposition 39.1

The [model sans-fies (11), (12), and(13).

Hoof For (11), suppose we are given
two Prpoints, A.B. if the line AB passes
through 0, then it is a Feline containing

them and is the only such. IfA,B, and O

are not collinear, let A’ be the inverse of
A under inversion in the circle I‘ (cf.
tion 37). Then there is a unique

circle 7‘ passing through A.A’, and B.

By (37.3), )1 is orthogonal to I‘, so that

portion of’,‘ that is inside I‘becomes a Pr
line containing A and B. it is unique,

because again by (37.3), any circle 7

orthogonal to [‘ that contains A also

contains A’.
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The other two axioms (12), existence of at least two points on a line and (I3)

of three noncollinear points, are obvious.
We ee immediately that this geometry will be noanuclidean because the

parallel axiom (P) does not hold.

Proposition 39.2

The parallel axiom (P) dues not hold 11'! the

Prmadel: There IS at Prime 7 and a Pal/Jami
A such that there is more than one 1371an

through A that is Paparallel to y. (Ofeonrse,

Paparallel means that two Felines do not
intersect.)

17an Take a Feline 7 in one part of our
Peplane and take a pointA far away. Let

A’ be the inverse ofA. Then (by 37.3)),
any circle through A and A’ will be or

thogonal to I‘, so it gives a Feline passing

through A. There are many of these

that do not meet 7, and these are all P7
lines through A that are Paparallel to y.

Definition
If A,B, C are Papoints on a Feline y,

we define the Faberwemness relation
A >:« B >:« C as follows. Let 0’ be the center
of 7 (which is always outside l‘), draw

the line PQ, and project the points

A.B.C to points A’.B’. C’ e PQ from the
point 0’. Then we will say A B C (Pr
betweenness) if and only if A’ x B’ C’

on the line PQ (usual betweenness). If

A.B.C lie on a Feline that is an ordinary
line through 0, we take the usual notion

of betweenness.

Proposition 39.3

The Woman of Blunt/227771238 for Pennints satisfies axioms (B1)7(B4).

17»an Axioms (B1), (132), and (B3) follow immediately from the corresponding

statements for ordinary betweenness on the line PQ. For (B4), taking into
account the circlercircle intersection property (E) in II and noting that two cirr

cles orthogonal to I‘ can meet at most once in de I‘, we see that to say that P7
points A. B are on the same Prside of a Peline y is equivalent to saying that A, B as
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ordinary points are either both inside 7 or both outside 7. Thus we can define the

inside ofa Patriangle, and (B4) is clear.

Definition
We define congruence in our Pmodel as
follows. Two I’rangles are Pacongrumt if
the Euclidean angles they define are

congruent in the usual sen. , For line
segments, we proceed as follows. Given

two Papoints, let the Feline joining diem

be the circle 7 orthogonal to I‘. Let 7
meet [‘ in two points P,Q, and label

them so that P is the one closer to A.
For another pair of points A’.B’ lying

on a Peline 7’, label P’,Q’ similarly.

Then we . y that the I’rsegment AB is
Pacong‘ruent to the P7 egment A’B’ if
the ssrratio (AB,PQ) is equal to the

cro aratio (A’B’.P’Q’) (cf. Section 37 for
crossratios).

Now the real work begins, to verify the congruence axioms. We start with

the easy one .

Proposition 39.4

Pecang‘ruence sans-fies moms (C2)e(C5).

Hoof (C2) is obvious from the definition, si e congruence of segments is

defined by equivalence of associated quantities in the field.

(C3) requires a calculation. From the definition of cro aratio it follows that
(AB,PQ) - (BC.PQ)

:(AC.PQ) (Verifyl). So when two segments are added to

gether, the associated crt seratios multiply. From this (C3) follows immediately.
To prove (C4), laying offangles, first

suppose diat we are given a point A A’
inside [‘ and a line 17! through A. Let A’ |'be the inverse ofA. Then there exists a
unique circle 7 passing through A and

A’ and tangent to die ine in. By (37.3) 7

is orthogonal to I‘. This shows that there
exists a Peline at A with any given tanr

gent direction. Now, if an angle at is
given and a Pline t) given at A, by (C4)
in II there is a unique line in forming the angle a with e) at A (and on a given
side oftl). Then the Pline with tangent m gives the required Pangle at A, and is

unique.
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(C5) follows from the same statemnt for Euclidean angles, because :ongrur
is the same.
ding to a discussion of the remaining axioms (C1), (C6), (E),

(A), and (D), we will establish the existence of rigid motion (ERM) in this
model. Recall from S on 17 diat a rigid motion is a transformation of the gen
ometry diat preserve the undefined notions of point, line, betweenne-- and

congruence. In our case, a Pangld motion will be a transformation of the set of

points inside I‘ that is lrtorl and onto, sends Pelin - to Felines, and preserves Pr
betweenness and Pacongruence of angles and segments.

Proposition 39.5 (Existence of rigid motions (ERM) for the Poincare model)

There are enough Brigid motions of the Polnmré modeI so that:

(1) For any two Ppoints A,A’, there is a Prigid motion sendingA to A’
(2) Gwen Pfilms ABB’,t_here is a Prigid motion leaving A fixed and sending

fhemy AB to theiag AB’
(3) For any P1mg 7 there is a Parlgllel monon leavmg aII the points of 7 fixed aria

interchanging the two sides of 7.

Roof We start with the last property.

Given a Pline 7, let be the circular
inve sion in 7. Since I‘ is orthogonal to

7,77, sends l‘ to itself (37.3). Also, the

inside of l‘ is 5 nt to the inside of I‘, so

that the Pplane is mapped to itself, in a
way thatis clearly 1to1 and onto. Sin e
ci ular inversion sends circles into (

cles (37.4) and is conformal (37.5), a

ci le orthogonal to I‘ will be sent to

another circle orthogonal to I‘, in other
words, 7r, nds Plines into Pelin .
(Note that fit s works also for the limitr -ing case of a line through 0, which is

also orthogonal to l‘.)

Circular inversion clearly preserves betweenness (Exercise 39.1). It prep
serves I’rcongruence of angles because this is the same as usual congruence
of angles, and inversion is conformal (37.5). Also, )7, preserves I’rcongruence of
P egments, because this is defined by the crossrratio, which is invariant under

ular inve ion (37.6). Finally, note that )7 interchanges that part of the P

plane thatis inside 7 with that part that'is outside 7, so /7 is a Prigid motion as
required for the third statement of (ERM). Si it leaves the points of 7 fixed

and interchanges the sides of )r, it is the I’rmflmrwn in 7 (Section 17).
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Next we will show that for any
A 7 0, there is a circle 7 orthogonal to [‘

(a I’7line) such that the P7reflection in 7

interchanges o and A. Let A’ be the in7
ver .ofA, let 7 be the le with center

A’ that is orthogonal to I‘. Then die

construction (37.1) for the circle 7, us
ing die same diagram (I), shows that in7

version in 7 sends A to 0. Thus the Fe
reflection in 7 interchanges A and o.

Now, since a composition of Brigid motions is again a P7ri id motion, given

two points A.A’, we can first send A to o as above, then send0 to A’. The com7
position of these two reflections will be a P7rigid motion sending A to A’, which
proves (1).

Now suppose that we are given diree points A, B. B’. Let )7 be a Brigid motion
taking A to o, and let 77(B)7 C, 7r(B’

7

C’. If we can solve problem (2) for

oCC’, in other words ifdiereis a Priid motion (1 leaving 0 fixed and sending

the ray FC‘ to the ray 0—C‘,then 7771077 will solve the problem (2) for A.B.B’. So

we reduce to solving the problem for o, C, C’.

Let I be the angle bisector of angle

COC’. Then I is a line through 0, which
is also a P7line. The ordinary reflection

in l is clearly a Prigid motionthat

leaves0fixed and sends the ray DC to

the ray OC’.

This comple s the proof of(ERM) for the Poinc re model.

Proposition 39.5
Axioms (C1) and (co) hold in the Poincare moael.

Iroof Suppose it is required to find a point B’ on a P7ray emanating from a

point A such that AB is Pcongruent to a given Psegment AB. By (ERM):
(39.5), there is a Prigid motion W taking A to A. There is also a P rigid motion

‘11 taking the ray ¢(AB) to the given ray from A. Then B’: il/¢(A) is a point
on the given ray, and AB7

C

AB’ because rigid motions preserve congruence.
Thus (C1) holds in the Poincare model.

To show that (C6) holds, since we have already established (C1)7(C5), we
simply apply (17.1), which shows that under diose circumstances, (ERM)
implies (C6).
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In order to discuss (E) in the Poincare model, we first need to identify what
is a I’7Cirt e. By definition, of course, it is the t of all P7points B’ sut that the

P7segment A’B’, for a certain fixed point A’, P7congruent to a given P7 .gment

AB. Since the definition of Pcongruence of segments is not very intuitive, it is
not easy to immediately what kind of curves these are. First we need a

lemma.

Lemma 39.7

If C, C’ are moo points inside I‘, not equal to the center of I‘. 0, then the Postdgmem OC
(which is equal to the Euclidean segment 0C, since the 1371an)Dlnlng o and C is Just
the usual line 0C) is Pctmgmem to the Psegmem OC’ if and only if 0C is congruent
to OC’ in the ambient Euclidean plane II.

Hoof Let P and Qbe the endpoints ofthe diameter of I‘ passing through 0 and
C. Then the I’7congruence of 0C is determined by the cross7ratio

7

OP
7

CF
7

0Q CQ'

Let r
7

radius of I‘ and let x:Euclidean distance from O to C. Then the cross

ratio is

(OC,PQ)

if C’ is another point, and if the distance from o to C’ is y, then we obtain
similarly

Cross multiplying, we obtain

rz—rX-t-ry—Xy:72+rX—ry—xy,

er zru.
Since our field has characte c 0, thi

gruent to OC’ in the usual sense.

is equivalent to )c 7 i7, i.e., 0C is (:on7

Proposition 39.8

Ever-y P7L’lrL’ZZ is an ordinary circle that is ennrer contained in the inside of I‘, andconversely, every circle entirely inside I‘ is a P7clrcle. (Warning: The P7cel‘lrer ofa P7

circle is usually not equal to its ordinary center.)
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hoof Given a P7 le cwith P7center A’, con. der a rigid motion 0 that takes A’
to o. This will transform c into a Pcircle with P7center 0. Since P7congruence
and ordinary congruence are the same for segments beginning at O by the
lemma, this image (1(5) is an ordinary ci with center 0. Then I)" will carry
this ordinary circle back to the given P7 le 5. Now observe that in the proof
of(ERM), all the rigid motions we needed were made out of compositions of P7
reflections (which are circular inversions in s itable circles) or reflections in a
line through 0. Since all of these transformations send ci - - es (37.4),
it follows that g is a circle. Since the transformed circle was a circ . around 0
entirely contained inside I‘, the image is also entirely contained inside I‘.

Conversely, given an ordinary circle

5 completely contained inside I‘, with /

(ordinary) center 0’, draw 00’. Let it
meet 5 at A,B. P7bi' ct the segment AB
at A’, and choose a Paeflection )7, that
sends A’ to 0. Then MC) will be a (in
cle, the images ofA and B will be equi7

distant from o, and this circle will be
symmetric about the line l

7

00’, which
is sent into itself by 75. Hence g(t) is a
circle with center 0, which is also a P7

circle. Applying or‘, it follows that the
original circle 5 is a P7circle with P7

center C.

Proposition 39.9

The Elrflie7fllrflie intersection property (E) holds in the Poincare' model over a

Euclidean ordered field F.

[roof Since Kline. and P7circles are all either usual circles or lines through 0,

and since betweenne s the . me in the P7model as in the ambient Euclidean
space, (E) in the P7model follows directly from (E) in the Cartesian plane II, and
this in turn follows from the Euclidean hypoth .. on F (15.2). Since P7circles are
usual t' cles entirely contained inside I‘, there is no problem about any of the

inter .. ions falling outside I‘.

For the next proposition it will be convenient to introduce the notion of a

distance function. In ordinary Euclidean geometry the distance function assigns
to each interval a positive number, and adding segments corresponds to adding

numbers. More generally, we make the following definition.

Definition

A dlsral‘lce fiincnon on a Hilbert plane is a function a that to each segment assigns
an element of an ordered abelian group G such that

Sidoli
Sticky Note
The gamma in the diagram should be replaced with a zeta. 

Sidoli
Highlight
This should be A'.
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(1) d(AB) > 0 for any segment AB.
(2) d(AB)

7

d(A’B’) if and only ifAB e A’B’.
(3) ifA t B C, then d(AC) 7 d(AB) + d(BC).

ifthe group happens to be written multiplicatively, we will call it a multiplicative

distance function. The usual distance function on the Cartesian plane over a
field F (Section 16) is an additive distance function with values in the additive
group of the field (F, +)

Lemma 39.10
In the Poincare model over a field F, the funcnan ii(AB)

7 (AB,PQ)’ is a muln7

plicative distance function ii/ith values in the multiplicative group of the field (F>n, -).

i

Hoof Because of our convention that P is the endpoint closer to A, the cross
ratio (AB,PQ) is in the interval (0,1) in F. Therefore, p(AB) > 1. We
have already used it to define congruence, and we have .en that it is multi7

plicative (proof of 39.4). Hence it is a multipl .ative distanc. function.

Proposition 39.11
Archimedes axiom (A) wlll hold in the I’7model if we assume Archimedes axiom (A’)

for the field F. Similarly, Dcdehnas aiiom (D) ioill hold if we assume (1”) in the
field. (Cf (15.4) for (A’) and (D’).)

Iroof Using the multiplicative distance functiony of(39.10), Archimedes’ axiom
in the P7plane is equivalent to the following statement in F: Given c.d e F,

c.d > 1, in > 0 such that c“ > d.
We will show that this property is a consequence of Archimedes’ axiom (A’)

for F. Write c
7 1+x, so rel-ix > 0. Then

c
7

(1+x)" 71+nx+positiveterms21+nrc

Now (A’) says that for some n,nx > d. Hence also 5" > d, as required.
For Dedekind’s axiom, (D’) in F implies (D) in [I (15.4), and this clearly

implies (D) in the I’7plane because of the way we defined betweenness by pro7

jecting onto a line segment. (For a converse to (39.11), see Exercise 39.7.)

Proposition 39.12

For any point A and any ray B17 in the Poincare' model, there exists a limiting paraIIel

ray (cf Section 34) Aa to Bh.

model in a
rcle through

Hoof Let the Fray Bh meet the defining circle I‘ of the Poincar'

point Q. Let A’ be the circular inverse ofA in I‘, and let i be the
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A.Q.A’. Then )1 defines a P7line, and we take Aa to be the Play of that P7line

having Q at its end. Then it 'lear that Aa and B17 are limiting parallel rays in

the Poincare model.

Using a little Euclidean geometry in the ambient Cartesian plane, we can
derive a marvelous relationship between the length of a segment and the angle
it makes with a limiting parallel.

Proposition 39.13 (Bolyai's formula)

Suppose we are given in the Poincare'
model a point P, a line I, the perpendicular
PQ to l, and a limiting parallel line m, V
mahng an angle a uath PQ. X

Then

tan 3
7p(PQ)". ""

where the tangent is understood to be of (it 1
the corresponding Euclidean angle, and ii

is the multiplicative distance function. The
equality takes pkice in the field F.

woof We may as ume diat the Poincare model is made with a cir e [‘ofradius

mes a radius QA, and P lies on an orthogonal radius QB. The lim7
iting parallel through P to I will be part of a circle 3, orthogonal to l‘ at A. its

center therefore is at a point C
7 (1.c) on the line x 7 1. Let Pbe the point (0. y).

Then CP 7 CA, so

(c—y)2+1.

Therefore,

1+ y
‘

. 12y ( )

Draw a diameter EF of 3 parallel to the roads. Then the angle a between our
limiting parallel and PQ, called the angle of parallelism of the segment PQ, is

equal to the angle PCF. Ifwe draw EP, then the angle PEF7 a/z (111.20). Now
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Substituting from (1) we obtain

(2)

[F D C E)at it

B

A
I1 P

A

a A ,L

G

On the other hand, the multiplicative distance function is

#(PQJ 7 (PQBGV‘
7

PB7 QB "
7

PG QC

,

1 Ll 7‘

7

1iy 1

1 t y77. (3)
1 .7

From (2) and (3) we conclude that

taii g
7

u(PQ)".

as required.

Remark 39.13.l

From this it follows that given any angle at less than a right angle, there exists a
segment PQ with angle of paralle i equal to a. indeed, (an(x/Z) will be an el7
ement of the field F, and then we can find a y e F satisfying (2) above. in par7

ticular if we take a
7

7 RA (one7half right angle), there will be a corresponding
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segment PQ uniquely determined up to congruence. in this sense there s an
absolute standard of length in the Poincare model, whereas in Euclidean geom7

etry the choice of unit lengdi is arbitrary.

Exercises

noted Proois hould be h d on the Eur ’

, F In particular, do not u. . any oftht,
depend on Archimed s’ axiom

391 Verify that circular inversion preserves betweenness in the Poincare model (of
proof of Proposition 39 5)

39 2 Show that the angl

this gcomctry

sum of any trianglc in the Poincare model is less than ZRA so
ihyperholiti [51. tion .24)

393 For any angle at show the eziixisttntt ofa lint- (:znln’tly contained insidc the angle at

(tf Ext 35 4)

39 4 Show that for any angle at < 6““ therc exists an equilatcral tnanglc With all of its
ang ual to a

39 5 If an equilateral trianglc has sides equal to AB and anglcs equal to at, show that

where a
7 p(AB) is its multiplicative length, and when: t 7 tan(a/2) (cf Example

42 3 2)

395 G1Vt:n any th angles a./l’,,iv with
at +/f+, < ZRA, show that therc
ists a tnanglc with anglt-s a.9,7 in thc

. mode1 Hint First show in

an plant- that you can find

,it-

and, Then 'hrink or expand this fig.
: ) that ith omes a tnanglt:in thc -

39 8 if two lin are parallel, but not limit-
ing paral 1. then they have a unique
common orthogonal lino
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9

39 I“

39 11

3912

For any angle a, the ,
s an uriclosmg .,z

line, which is a line limiting parallel to
hoth arms oia

(5in an altt native proof of (CI) in

the Poincar, mod , , Without using

rigid motions, as follows Given a

point A, a P-line y, and given a quan-
tity )7 e F, (J < 17 < l, we need to find a Q
point B e y such that

(AB. I’Q):17

Do this by showmg that in Eutilide

getimetry, the locus of points B

that BP/BQ , a given ratio k6 F 1‘
,

circle Then u E), in the Cart

plan _ to show that this

d inside l‘,

of the 1’-

ter 0_ and another c C entirely etintai ,

,n’L ru tion (in th ambient Euclidean plane
\

Proposition 39 8)

hle ways ot Eilling th e d -
t

.
is no overlap, and

they tall the entire plane

(b) At each vertex of the triangula-
tion, all the angles a the

n be moved to

at each vert x are all fit)"

tti find thr”

the anglt
,qual Expee

all possihilities
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39 13 ln tlie l’tunca
'

model of non-Ei lidean geometry, show, in contrast to the Eucli-

dean situation dt cribed in Ex, Me 3912 ahm ,, that there a , nfinitely many
dil-t nt ways to r tht: P-plane by congruent P-triang s satisfying propert :s
(a) and (h)

in particular, prm't: that the pla n he t \‘t

all ang ~ ual to 45“ and With eight niet rig at ac

oftlit mangles, find MAB)
Draw a big irt l‘ on a pie :ot pa

g .s insitle I'm show how tl ,y

_ etl entirt by ruler and comp
steps, except to show how you got the first triangle )

lliy quilateral triangles With

\' flux lfALfi 1h 11 sldt: of um:

and then at draw enough ot
ever the whole P-plzm. (“HS tirawmg

, but dtm’t bother listing tht:

filling up the point: re model ot(:ongruent iso

tlie non—Euclidean plan
,

72245 —4 t triang :s

Xi. ,rct 113)

39 14 ln tlie Poincare model mat
4

have :n that any Euclidean cir

(Proposition 39 2‘.)

nside a circle l‘ in tht: Can an plane over 1" we
;l entirely contained inside l‘ is a l’-t‘,ll’
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(a) it is a Euclidean circle in id

and tangent to I‘, ,how that there .
pt eilotlimiting paralle 1

all means the St:t of all lint

mutually limiting paral

(b) If , s a Euelidean eirele that cuts
l‘ at points RQ, let I be tht: l’-line
havmg th dpoints P, Q Show that

the points of ’,‘ inside I‘ form a curve

of points equidi ant from the P-llnc 1
Such a curve is called an equidistant
curl/u

or hypm’cyclu C?

ow that they

: [Contrast to
E an gttimztry, wherconly the firsttwo po ' ilities occur)

39 15 Show in the Poincare model that it is in general ntit possible tti tristict an angle [i ti ,
ifa is an angle the angle ‘,a may ntit exist) ~

3916 show in th leint i_
- » - i' ( - - z 14), that

it is in ge -division points may
ntit exist)

3917 ln the Poincare model show that if
two altitudes of a triangle met ’

point then the third altitud-

By a rigid motion ofthe Poin-

, plane we move that meeting
point to the diefining

circlA l The those altitudeshiiome

an lint through 0 We must

show that the li : or; is orthogonal to

AB,AC BC are Euclidean cirt orthogonal to I‘ Let D,E,F i the

, . Show that the allitudz ofthe P-tnangle ABC arc at the
)f the Eucilldtan tnanglt: DEF Then use the Eu(,l,ld(an the0-

rem that the altitudes of a triangle meet [Proposition 5 h) tti finish the proof
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Note This i a curious me,thod Whi eby the Euclid ri resultis u d tti show

(via Eucilidtan g, metry) that [ht . mc rt, ult hol in th , non-Euclid ,an Poincart

model Sin we now know that th ' i It hold 'n both Eut id n and ntin--Eu

dcan geometry, it would be nice to have a single proof in neutral geometry that
appli ~tohoth ta is—tt Ext: 4014 and Thi s

39 18 Show that the result of Exerci i 1 15 is also valid in the Poincare model_ by moving

the figure so that P becomes th of I‘ and using the Eu 1i an 1t alr ady

proved Can you find a proof in neutral geometry that will cover both cas
one ,7

3919 prove a non-Euclid n analogue ot
(11136) in the iAoincarc model as fol- P
lows Let Pbt a point outsidt a
’,‘_ 1e PA he atan

i

tto y. and H P136 3 C

ht a ant Let i1(PA)_17:p(PB),
and e:ptpc) Then y
a
,

l 17 17e l e
,

l

a + l
7

17 l e + l ' \

Hint Move P to the c inter o otthe Poincare model, usti the Euclidean [111 35)—cf
Proposition 20 9—and compute )i as in the proofof Proposition 39 13

39 20 In tht: Point
‘model, if three

- in two ptiints,
radit lax [Ex-

ise 20 4) meet in a ptiint

(a) One method is tti suppo hat two
in a point A

Move hat point to O_ and u . thi Eu-
clidean result (Exe 2t) 5)

(b) Another method is to use Ext. of a point with re-

39 21 is another model of a non-

m try_ due to Felix

: d as follows In the
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39 2,3

39 2,4

However, the model is not eontornial [i e, angles are not the same as Eucli—
dean angl -), so the definition and properties titcongruenct tor lint segments and

tor anglt iompliaatt d Rather than doing this di ly, wt. will show in

this t:ixtrcist: hoW tti obtain tht: Klein model from the Pointare model
Let A be a circle of radius 1 centered at the ()ngln_ and in tht: Cartesian 3-space,

place a sphere of radius 1 on the plane, with its south pole at the origin [ct Exer—

cise 37 1) Let 1‘ be the circle of radius 2 centered at the origin For each K-pmnl

inside A, project it straight up tti obtain a point of the southern hemisphere of the

sphere, and then use the stereographic projection [Exercise 371) from the north

pole to obtain a P-point inside I‘

ShoW that this transformation gives a l-to-l correspondence between the points
otthe K-plarle inside a with the points ot the P-plane inside 1‘, which sends mines

to P-lines and viee versa Then we can transport the notions oteongruenee for 1’-

segments and P-angles to the K-plane, so that the K-plane becomes a model of a
non—Euclidean Hilhert plane, isomorphic to the iAoincare model

rt: mort

11ABC is a tnanglt: having a circum-

serihed eirele, prove that the medians

of ABC mt t in a ptiint, as follows
Use the Klein model (Exercist '9 21)

and place tht: center of th- circum-

scribed circle at the center 0 of the
circle a Then the perpendicular

his: tors of the sides of ABC ht omc

diameters of the circle A Concludc

that the K-midpoints of the side of

tht: triangle are equal tti th Euclid ri

midpoints and then use the Euclidean

theorem about media in the ambi-

ent plant:

ln the Cartesian plane over the field F, let I‘ be a circle of radius r centered at the
origin, and let I" he a eoneentric cirele ofradius w Consider the map or from the

set of points inside I‘ to the set of ptiints inside I" given by

kx.

where k:’/r show that 9 gives an isomorphism ot the iAoineare model made

With 1‘ to the Poincare model made With 1", which preserves the multiplicative
distance function of Lemma 39 10 Conclude that if I‘ and I" are any two circles in

the Cartesian plane over F, the associated Poincare models are isomorphic Hilbert
planes

Let F be a non-Archimedean Euclidean held such as the one described in Proposi-
titin 184 Let ll . tht: Poinca .mtid. ovt:r Fandlct lln be the subset ofpoints that
art: at finitely bounded multiplicative distanct: it from . mc t-ixtid ptiint O ShoW
that itn is a non—Euclidean Hilhert plane with properties (a) and (b) helow
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39 25

39 2h

39 27

39 28

39 29

7, Non ' Gmmetrv

(a) The angle suni otany triangle is less than use, so it
is niihyperholic

(b) Limiting parallel rays on distinct lines do not exist

(e) L Hi be th
,

dran- trom o
is in.

tini mal Show tha lli »

.
i

» ti tying(a) and (b) above

(d) show that lip and Hi are not isomorphic Hilhert planes

Compare Exercises 183—18 6

In this and the following ex , ,
' We in igate the Poincare model ove a field

that d notb E dt n L t F Pythagorean ord red fitld let tleF, and ltt
l‘bethe eiiirtlt x1 y- ed, whiehmay he av]rlualt:):lr(lt ifflitmExtrt

i

We define the Poincare "1(1th in Ias in the text The intent» of l is tht

()t.y)vl1[hx2+y <31 Thi
orthogonal tti I‘ (which ml.
37 17)) as before

(a) show that the meide

(b) If )v is a iA.lme_ the inte

xloms(11)-[l3) holds, as in Proposition 39 l

ection points 12.Qot )v with I‘ may not exist but the line

ot o’, Wh

ShoW that betweennas before

, . . ,

W,F

condition (sd) For any a e F ira
7

ti> o, then t/ dsF

(a) ShoW that tht: circ

thtigonal tti I‘ Hint Writ.

nut cd tti find their inte

tisfies the additional

- on property (E) holds tor
('

. ot m, and show that the

of condition (sd)

- M or-

quar. rtiot

(b) Conclude that aitiom [134) also holds in this model

Continuing with the situation of the two previous exert-i s, it it is a P-llne, the

e on p, Q with 1‘ do not e , but atl they haw ioordmates m
A

crossratio (AB.PQ) in that field, and

nd segments as in the textdetme eongrue of angl

(a) Using eondition (six), show that tor any point A’ outside 1‘,ther

With ct rA’ and orthogonal to I‘

A

exists a circl
A

y

(b) Venty that Propositions 39 4, 39 5, 39 a hold in this model, so it
is
a Hilhert

plant We :all it the l’omtzar model in the (virtual) cir le x2 + p1:A You will

n part (a) of tht: proofof Proposition 39 5

in the model ot Exe ise 39 27, itfl g F, show that th
rays on distinct lines, hut that any two parallel lines hav-

a no limiting parallel

common orthogonal

For an examplc of a be1d F satisfying the conditions of Ex
he a Pythagortan ordtItdfii1d torexample the field otcon rutible realnumht
le F:I<((z)) he the 1d ot iaurent o 1< (Exe 189): and let its z
Verity that it > 0_ y/Z sn and that F satistie condition (Mi)
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39 30 For an Archimedean (ixamplc of a ficld as in Exert , 9 29, lct Fhe the field of all

thost: rcal numb that n be cxprt d using rational numf and a finite

numb ,r of operations +,. , ,ti>—» l+ti-, and Lit—t \/Lt2 ,pirovid(d that
a7
,

fl > 0

(a) F is a Pythagorean ordered field, it:fl is in F and F satisti
Exercise 39 26 for d:fl

(b) Let p Q(fi) 1R he the homomorphism that mak s p((f):fl show

inductively that I} extends to a homomorphism p of Fto 1R

‘orldltlon (xd) of

(ti) since mfz) <t), conclude thatfzcannothe asquare inF

2 +y fl over the field F

of an equilateral triangle, as

39 31 ShoW that in th Poi

ot Exen se 3 3t), not

follows

(a) lfx e Fwith t) < x and x1 < f2, let AB be the segment from (o, o) to (x. U) m the
Ftiincare model, and show that

MAB): (2::
an tiquila ral triangle With sidt: AB. let the angle at a

9 5 tti shoW that

(e) Now take a suitable x such as i:fi 71. and use an argument similar to the
prt:Vious : tti show that th ”‘1’ sponding t is ntit in F H nt tht: equilat-

eral triangle With sidc AB does ntit tixist Hint For th t: two t:xt, s, it may be
useful to reVieW the techniqut used in Exert ses lo ltl—lo 14

4O Hyperbolic Geometry

in die earlier se ons of diis chapter we have s ,n something of die develop

ment of neutral geometry and the study of the angle sum of a triangle using

Art2himedes’ axiom. We have also seen the Poincare: model of a noneEuclidt-ian
geometry over a field. For die full development of the geometry of Bolyai and

Lohat: evsky, we need the limiting paralle The existence of these limiting

,
,n in the Poinca ,model (39.12), do not follow in

the axiomatic treatment from what we have done so far (Exe 39.24, 3928),
Therefore, following Hilhert, we will take the existence ofthe limiting parallels

as an axiom. This axiom is quite strong, It will allow us to develop noanuclldean

geometry independently ofArchimed "axiom, it also allows the - nstruction of
an ordered field out of the geometry (Section 41), and a proof that the abstract




