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39.30 For an Archimedean example of a field as in Exercise 39.29, let F be the field of all
those real numbers that can b( expressed using rational numb( rs and a finite
number of operations +,—,-, ~,a+— V1 +a?, and a— Va? — pr(wld( d that
at — v"E = (.

(a) Fis a Pythagorean ordered field, d = v2 is in F, and F satisfies condition (d) of
Exercise 39.26 for d = /2.

(b) Let ¢: Q(v2) — R be the homomorphism that makes ¢(y/2) = —/2Z. Show
inductively that ¢ extends to a homomorphism ¢ of F' to R.

(c) since ¢(v/2) < 0, conclude that /2 cannot be a square in F.

39.31 Show that in the Poincaré model in the virtual circle x? + yz = /2 over the field F
of Exercise 39.30, not every segment can be the side of an equilateral triangle, as
follows.
(a) Ifxe F with 0 < x and x* < /2, let AB be the segment from (0, 0) to (x,0) in the
Poincare model, and show that

\/_ + X

\/Z —x

(b) If there is an equilateral triangle with side AB, let the angle at a vertex be 2,
and let t = tan(«/2). Use Exercise 39.5 to show that

VZI-% 1 \/7
t= 6 — 2222 — x*
5\/_+x5 32 +

(c) Now take a suitable x, such as x = \/E — 1, and use an argument similar to the
previous exercise to show that the corresponding t is not in F. Hence the equilat-
eral triangle with side AB does not exist. Hint: For these two exercises, it may be
useful to review the techniques used in Exercises 16.10-16.14.

H(AB) =

40 Hyperbolic Geometry

In the earlier sections of this chapter we have seen something of the develop-
ment of neutral geometry and the study of the angle sum of a triangle using
Archimedes' axiom. We have also seen the Poincare model of a non-Euclidean
geometry over a field. For the full development of the geometry of Bolyai and
Lobachevsky, we need the limiting parallels. The existence of these limiting
parallels, which we have seen in the Poincare model (39.12), does not follow in
the axiomatic treatment from what we have done so far (Exercises 39.24, 39.28).
Therefore, following Hilbert, we will take the existence of the limiting parallels
as an axiom. This axiom is quite strong. It will allow us to develop non-Euclidean
geometry independently of Archimedes' axiom. It also allows the construction of
an ordered field out of the geometry (Section 41), and a proof that the abstract
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geometry is isomorphic to the Poincare model over this field (Section 43). Using
coordinates from this field we can develop non-Euclidean analytic geometry and
trigonometry (Section 42).

So at this point we start the axiomatic development of hyperbolic geome-
try, which is essentially the “classic” non-Euclidean geometry of Bolyai and
Lobachevsky, freed from hypotheses of continuity. In particular, we will not use
the circle-circle intersection axiom (E) nor Archimedes’ axiom (A). Instead, we
use Hilbert's axioms of incidence, betweenness, and congruence plus the fol-
lowing hyperbolic axiom (L):

L. For each line [ and each point A not
on [, there are two rays Aa and Aa’
from A, not lying on the same line, and
not meeting [, such that any ray An in
the interior of the angle aAa’ meets L.

Note that (L) immediately implies that the geometry is non-Euclidean, be-
cause the two rays Aa and Aa’ lie on distinct lines through A that will both be
parallel to I.

Definition
A Hilbert plane satisfying (L) will be called a hyperbolic plane, or a hyperbolic
geometry.

We will see shortly (40.3) that the angle sum of a triangle in a hyperbolic
plane is less than 2RA, so this terminology is consistent with the term semi-
hyperbolic introduced earlier (Section 34).

Recalling the definition of limiting parallel rays from Section 34, we see that
if we pick any point B on [ and let Bb, Bb' be the two rays from B lying on [, then
Aa will be limiting parallel to Bb and Aa’ limiting parallel to Bb'. Thus (L) im-
plies that for any point A and any ray Bb, there exists a limiting parallel Aa to
Bb. We define an end to be an equivalence class of limiting parallel rays (34.13).

Definition

For any segment AB, let b be a line per-
pendicular to AB at b; choose one ray
Bb on the line b, and let Aa be the lim-
iting parallel ray to Bb, which exists by
(L). Then we call o = / BAa the angle of O
parallelism of the segment AB, and we :
denote it by 2(AB). (Lobachevsky uses 5 b
the notation I1(AB).)
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Note that the angle of parallelism in well-defined: If we reflect Aa in the line
AB, then clearly it will be limiting parallel to the other ray on b, so that the angle
o is independent of which ray we chose on the line b. Note also that the angle of
parallelism o is necessarily acute, because the two limiting parallels from A to b
do not lie on the same line, by (L).

Proposition 40.1
The angle of parallelism varies inversely with the segment:

(a) AB < A'B' & s(AB) > a(A'B').
(b) AB = A'B’ < a(AB) = a(A'B").

Proof First suppose that AB = A'B’. Then by the (ASL) congruence theorem for
limit triangles (Exercise 34.10) it follows that 2(AB) = «(A'B’).

Next, suppose AB < A'B’. Mark off
C on the ray AB such that AC = A'B’,
draw the perpendicular ¢ to AC at C,
and let Aa’ be the limiting parallel from
A to Cc. Then o' =/ CAa’ is a(AC) =
x(A'B’).

Let Bb be the ray perpendicular to
AB at B on the same side of AC as a'
and ¢. I claim that Bb meets a’. If not,
then the ray Bb would be in the interior
of the angles CAa’' and ACe, meeting
neither the ray a’ nor ¢, and so it would be also limiting parallel to Aa’ and Cc by
(34.12.1). But this contradicts the fact that the angle of parallelism is always
acute, since Bb ||| Cc and the angles at B and C are both right angles.

So Bb meets Aa', and this implies that the limiting parallel from A to Bb
makes an angle o greater than o', i.e., 2(AB) > «(A'B’).

Reversing the roles of AB and A'B’ we find that if AB > A'B’, then
o(AB) < a(A'B’). Combining all three results now gives the desired reverse
implications.

Remark 40.1.1
We will see later (40.7) that for every acute angle «, there exists a segment AB
with a(AB) = o.

Our next goal is to establish some results about limiting parallel rays, limit
triangles, and parallel lines that are not limiting parallel. We have already seen
two congruence results (ASL) = (Exercise 34.10) and (ASAL) = (Exercise 34.9).
We will prove some others, analogous to those for ordinary triangles in Euclid's
Elements, Book 1.
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Proposition 40.2 (Exterior angle A
theorem)
If AB is a segment, with limiting parallel

rays emanating from A and B, then the ot
exterior angle f at B is greater than the lE
interior angle o at A. B k

Proof Because the ray through A making an angle ff with AB is parallel to [
(1.27) we know at least that o < f5.

So suppose « = fi. Let a’ and b’ be
the opposite rays to a and b. The sup-
plementary angles at A and B will also
be equal. Since AB is equal to itself, we
can apply (ASAL) = (Exercise 34.9) to
AB, a,b, and BA,b', a’. We conclude that
a’ is also limiting parallel to b'.

But this contradicts the axiom (L), which says the two limiting parallels from
A to b do not lie on the same line. Therefore, o < ff, as required.

Corollary 40.3
In a hyperbolic plane, the sum of the angles of any triangle is less than two right
angles.

Proof According to (34.6), for any triangle there is a Saccheri quadrilateral
whose top two angles are equal to the angle sum of the triangle. So we have
only to prove that the top two equal angles of any Saccheri quadrilateral are
acute.

Let the Saccheri quadrilateral be
ABCD, with base AB = [. Draw limiting
parallels from C and D to I, with end w
by axiom (L). Then by (40.1) the angles
of parallelism « are equal.

Looking at the limit triangle CDa,
by the exterior angle theorem (40.2),
£ > 7. On the other hand, by (34.1), the top angles « + y and ¢ of the Saccheri
quadrilateral are equal. We conclude that «+ f > «+ y =4, and so  must be
acute.

Remark 40.3.1
Note how different this proof is from the proof of the Saccheri-Legendre
theorem (35.2), which reaches the same conclusion under different hypotheses.
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There we made use of Archimedes’ axiom and a countable limiting process.
Here we do not need (A), but we use instead the powerful axiom (L) on the exis-
tence of limiting parallels. This result says that a hyperbolic plane is semi-
hyperbolic, thus justifying the terminology introduced earlier (Section 34).

Proposition 40.4 (AAL)

Given two limit triangles ABIm and A'B'lI'm’, suppose that the angles at A and B are
equal respectively to the angles at A' and B’'. Then also the sides AB and A'B’ are
equal.

Proof 1If not, let us suppose that AB >
A'B’. Choose a point € on AB such that A
CB = A'B’, and draw a ray n at C, on the
same side of AB as [ and m, making an

angle equal to the angle at A’, which is y

also equal to the angle at A. Now com-

paring C,B,n,m to the limit triangle g
A'BlI'm’, it follows from (ASAL)= g b
(Exercise 34.9) that n is limiting parallel o

to m.

Then by transitivity (34.11) it follows also that [ is limiting parallel to n. But
this contradicts the exterior angle theorem (40.2) because the angle at C, which
is exterior to the limit triangle ACIn, is equal to the angle at A.

We conclude that AB = A’'B’, as required.

Remark 40.4.1
For some results about triangles with two or three “limit angles,
40.2, 40.8.

" see Exercises

Theorem 40.5
In a hyperbolic plane, if | and m are two parallel lines that are not limiting parallels,
then there is a unigue line in the plane that is perpendicular to both of them.

Proof Let 1 and m be two parallel lines that are not limiting parallels. Let AB
and CD be two perpendiculars from points A, C on [ to m. If AB = CD, then
DBCA is a Saccheri quadrilateral, and hence the line joining the midpoints of AC
and BD will be perpendicular to both ! and m, by (34.1).

If AB # CD, we may assume CD > AB, and we proceed as follows. Take E on
CD such that AB = ED. Let n be a ray through E making the same angle with ED
as [ makes with AB. I claim that n will meet [ in a point F. Indeed, let p be a
limiting parallel from B to I. Since by hypothesis I and m are not limiting paral-
lels, this ray does not lie on the line m. Let g be the ray through D making
the same angle with m as p does at B. Then g is parallel to p by (1.28), but not
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a limiting parallel, by the exterior angle theorem (40.2). On the other hand,
applying (ASAL) to ABlp and EDng, we find that ¢ is limiting parallel to n.
Therefore, n is not limiting parallel to p, and hence n must meet [ at some point
F. (In the figure we put F on the far side of A from C, but the proof works
equally well if F is between A and C.)

Now take H on [ such that AH = EF, and take K on m such that BK = DG.
Then comparing the quadrilaterals EFDG and AHBK, two applications of (SAS)
show that FG = HK and HK is perpendicular to m. Thus GKFH is a Saccheri
guadrilateral, and the line joining the midpoints of FH and GK will be perpen-
dicular to both I and m.

D K

It remains to show the uniqueness of the line perpendicular to both [ and m.
Suppose to the contrary that AB and CD were two common perpendiculars to [
and m. Then ABCD would be a rectangle, which is impossible —cf. (40.3) and
(34.7).

Proposition 40.6
Given an angle in the hyperbolic plane, there is a unique line (called the enclosing
line of the angle) that is limiting parallel to both arms of the angle.

'l[o{

Proof Let O be the vertex of the angle,
and choose points A, B on the two arms
of the angle, at equal distance from O. It
will be convenient at this point to intro-
duce a new notation. We denote by o p
the end of the ray OA, that is, the
equivalence class of all rays limiting
parallel to OA. Then we may draw the
line Bx, meaning, let Bx be the ray
through B limiting parallel to OA. We
may also speak of the limit triangle
ABu, consisting of the segment AB plus
the two limiting parallel rays Ax and Bo.
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To continue our proof, let « be the end of OA, and let ff be the end of OB.
Draw Bu and Aff. Let a be the ray bisecting the angle #Af, and let b be the ray
bisecting the angle aBff. Note by symmetry (!) that the bisected angles at A and B
are equal. We distinguish three cases.

Case 1 The lines a and b meet at a point C. By symmetry (!) AC = BC. Draw
the line Cf. Then by (ASL) = (Exercise 34.10) applied to the limit triangle ACf
and BCf, the angles at C of these two triangles are equal. But this is clearly not
80, so this case cannot occur. (See diagram on previous page.)

Case 2 The rays a and b are limiting
parallel with an end y. In this case the
ray By is in the interior of the angle
ABf, so it meets Aff in a point C. By
(AAL) = (40.4) applied to the limit tri-
angles ACy and BCf, the sides AC and
BC are equal. Therefore, by (L.5) the
angles BAC and ABC are equal. But this
is not so, because the angle BAC is also
equal to the angle ABx, which is prop-
erly contained in the angle ABC. So this
case cannot occur either.

Case 3 The only remaining possibility
is that a and b are parallel but not limit-
ing parallels. Then by (40.5) there is a
common perpendicular line I, meeting
a at C and b at D. I claim that [ is the
required enclosing line, i.e., [ has the
ends o and f.

By symmetry it is enough to show
that [ has end f. If not, draw the lines
Cf and Df, which will be distinct from L.
We compare the limit triangles ACf and
BDf. The angles at A and B are equal,
by construction. The sides AC and BD
are equal by symmetry (!), so by (ASL)
the angles at C and D are equal. It fol-
lows that Cff and Df make equal angles
with [ at € and D, which contradicts
the exterior angle theorem (40.2). We
conclude that [ has ends « and f, as
required.
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The uniqueness of the enclosing line is clear, because by (L) we cannot have
two distinct lines that are limiting parallel at both ends.

Corollary 40.7

For any acute angle a, there exists a line that is Iimiting parallel to one arm of the
angle and orthogonal to the other arm of the angle. In particular, there is a segment
whose angle of parallelism is equal to «.

Proof Given the acute angle o, we

double it, and consider the enclosing

line (40.6) of the angle 2o. This will be

orthogonal to the angle bisector of 2o, £ L
which is one arm of the original angle «. %
Thus « becomes the angle of parallelism

of the segment cut off on that arm of the

angle.

Remark 40.7.1
Combining with (40.1), we see that there is a one-to-one correspondence be-
tween the set of congruence equivalence classes of line segments and the set
of congruence equivalence classes of acute angles, given by associating a seg-
ment AB to its angle of parallelism «. In particular, there is a uniquely deter-
mined standard or absolute segment size corresponding to one-half of a right
angle.

Be careful, however, because this correspondence does not send sums of
segments into sums of angles. There is a more complex relationship that we will
see later (Exercise 42.7).

Proposition 40.8

In a hyperbolic plane, Aristotle’s axiom holds, namely, given an angle o and a seg-
ment AB, there exists a point C on one arm of the angle such that the perpendicular
CD from C to the other arm of the angle is greater than AB.

Proof Given the angle « at A, let [be a c £
line limiting parallel to one arm of «
and meeting the other arm at right an-
gles at a point F (40.7). Take E on [ such 2
that EF = AB. Draw a perpendicular to [
at E, and let it meet the other arm of the
angle « at C (cf. Exercise 34.12). Drop a A A I
perpendicular CD from C to AF. D £




Lofgen des Lrften Bich

Euclidis Paopoficion/Das 1ft/Livad-
bertoder @cbluﬁrebm,

1. Dicaft Propoficion/  ebne
Auff ein gerade linj {o einer bekbantten lenge i / ainen
gleichfettigen Triangel fFetlen,

Burnung an den Lefer.

Reitndeticher licher Tefer/diemeil dicDamonfirationcs(das if
grundelich vrnd ontwider fipechliche betocpfungen def poni
a gensfo Euclides in feinen Propofition als warbaffiig filr-
gibeynit von jmedem Euelide felbsfonbern von anbdorn hodh
gelerten Ehilfiveichen menmeresizals Theone HopfidoSam
pane/Chindigefent worden: i danbemclte Denionfiras
tior/ eftwa fohodrlich von vrgelrtten mdaen vertortmen vnnd begrifftn
werden/vnnd danttein eirglﬁgerficﬁtl'([jcr ficbfaber bifer fhifnfion woll be-
guitae onnd sfriden Ry Soeediefach verfichs ob e fchon vrfach vind ben
grand defielben nittatlmal erfhent Hab ich folche Demongivation 5k sciccen
angelaffensonnd Gocdche ihdom lefer nifser vid angetanmmes perman ) at
flact derfelben/pen gebrauchonnd nue foleher Propoqition/ma ih das figlich
fein vermaimt angesaigtionnd mit Eranpler vind derjiffer st lich ovfieree,
B feittenmal bic Sehufreden oderPropefition Suclivis Jwatertai feind
Yhearews- D ann ctliche [chleche cinaigenfchafft andaigenmetehe 3ubobafen andereain
. grundift ( Als da feindin difem erien biteh die 4.5.6 provofitiones/«7.; Fe
fich aber fehren ettivae aufi folcBem grund machenyalh dife Erffe iffrond dare
Problavsts  pachdic o.10.11 {18, SHab ichatimal mit fleif ansaige/wic follichs sinuachon
fei fo Enclives [eeret/onnd Jvnderfehaid alliveg 30 der saal der Diopofition
gefehiben; Lchat. Anch alf dann gervonlich dest grind follicher handlung ain:
feliiger woiff mit angeiaigt. Areh Pab ich saseittor in den figurenbichffaben
oder 3iffern gebranchesa seitian nicht/nach demich hab mogen cracbten fil-
alich ond verflendiseh fein woll der Lefee filr gitel Habert. Tag foriin in diw

femy BieD von (inizs geredirverfifie alles vonrediten gefiracfen linicn,

 igur ond Eelldeungder eeflon Propolition.
DWicwwol dife propofition leichtlich mag verftan=
ben werdetyauf beigefeseer feonrr eoill ich fich fe
Do dicwnl fp bicerjbiveitleffid eeflere. Die fite
acbent Enj Darauff ich den triangel! foll nfachen;
tft besaichnee mitdenn bischffaben a B;'E'Ilidgsr
liny Lenge bearoiff {ch et eineny sivefelrvnnd
fee Don ainen fig tn der puncten alond veif mic
van andan den Fivefel b ¢ brbarnach fos den
atenfif ndenpuncten Bronnbdreiff ben sirefel
@ ¢ c/Dife 3wen sirelelf werdenon giociffel afeich Feinsdann fip Basd mit onuer
viefheon ivefels in aiter weitein befchubern/Lind bey den puncien ¢/ gebn
fo durcheinandersond machen ain ercilfe. Pentnach Jeuch vonrden punctn ¢/ge
gen dan g atn yechte linjronnd dergleichens ainte gegen dem b fo Baff den
fria ngel

Plate XIV. Beginning of the first German translation of Euclid’s Elements, by Wilhelm
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Consider the quadrilateral DFCE. Because of (40.3), the angle at C must be
acute. Therefore, CD > EF = AB (34.2), as required.

Remark 40.8.1
In fact, a stronger result is true, namely, given o and AB as above, one can find
C such that CD = AB. The proof uses hyperbolic trigonometry (Exercise 42.8).

Now, as an illustration of the techniques of this section, we will give the
hyperbolic version of a familiar Euclidean theorem on the angle bisectors of a
triangle. The fact that the (internal) angle bisectors of a triangle meet in a point
is true in neutral geometry, hence both in Euclidean and hyperbolic geometry,
as we have seen before (Exercise 11.6). The following result has to do with the
external angle bisectors of a triangle.

Proposition 40.9
In a hyperbolic plane, let ABC be a triangle, and consider the (internal) angle bisector
at A and the external angle bisectors at B and C.

(a) If two of these angle bisectors meet in a point, so does the third.

(b) If two of these angle bisectors have a common perpendicular line 1, then the third
is also perpendicular to 1.

(c) Iftwo of these angle bisectors are limiting parallels, so is the third, at the same end.

Proof (a) If two of them meet in a
point Y, then Y is equidistant from all
three sides of the triangle; hence it lies
on the third angle bisector. The proof in
this case is the same as the Euclidean
case (1V.4).

(b) Suppose that the angle bisectors
at A and B have a common perpendicu-
lar line [.

We first claim that ! cannot meet
any side of the triangle. If it meets one
side, then by reflecting in the two angle
bisectors, it will meet the other two
sides, and it will meet all three at the
same angle. Two out of three of these
intersections (in the diagram V, W) will
have the angles in corresponding posi-
tions, so that by (1.28) the lines BC and
AC will be parallel. This contradicts Y v

their meeting at the point C. Thus [
cannot meet any side of the triangle.
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Secondly, we note that I cannot be a limiting parallel to any side of the
triangle. If it were, then by reflecting in the angle bisectors, it would be
limiting parallel to the other two sides, and so would have three ends, which is
absurd.

So | neither meets nor is limiting
parallel to any side of the triangle;
hence by (40.5) it has a common per-
pendicular with each side of the trian-
gle. Using the lemma below, the first
and second of these common perpen-
diculars are equal. Similarly, the first
and third are equal, because the angle
bisectors at A and B are orthogonal to L.
Therefore, the second and third are
equal, and using the lemma in the other

direction, we see that the angle bisector
at C is also perpendicular to .

(c) This third case of the proposition follows by elimination. Suppose two
angle bisectors are limiting parallel. If the third is not, then it either meets one
of the others or has a common perpendicular, which puts us in case (a) or (b),
contradicting the first two being limiting parallel.

Lemma 40.10

Consider a five-sided figure ABCDE with rvight angles at A, B, C, D. Then AC = BD
if and only if the angle bisector at E meets the opposite side at a point F at vight
angles.

Proof First suppose that the angle
bisector at E meets AB at a point F,
making a right angle there. Then reflec- o
tion in the line EF sends the line AB |
into itself and interchanges the lines CE

and DE. So the segments AC and BD

are interchanged, because they are the
unique common perpendiculars (40.5) 3
between the lines AB and CE and AB A
and DE. Hence AC = DB.

Conversely, suppose AC = DB. Draw the line CD. Then ABCD is a Saccheri
quadrilateral, and the angles at C and D are equal (34.1). It follows that the base
angles of the triangle CDE are equal. Hence it is an isosceles triangle, and the
angle bisector at E will meet CD at its midpoint at right angles. Now it follows
from (34.1) that this line continued will meet AB at its midpoint F, at right
angles.

C

B

’1}3_-'""
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Remark 40.10.1
To make a more unified statement of (40.9) we will define an ideal point P* to be
an equivalence class of lines, all of which have a common perpendicular line p.
We will say that P* lies on a line I, if [ | p. We define a generalized point to be
either a usual point, or an end, or an ideal point. Using this language, we can
say that the three angle bisectors of (40.9) meet in a common generalized point.

Exercises

The following exercises all take place in a hyperbolic plane, that is, a Hilbert plane
satistying (L).

40.1

40.2

40.3

If two lines I, m have a transversal
n that makes equal alternate interior
angles, then I, m are parallel but not
limiting parallel. Furthermore, in that
case there is a unique point P such
that every transversal that makes
equal alternate interior angles to [ and
m passes through P.

(ALL) Suppose we are given equal an-
gles at two points A and A', and let |
and [" be their enclosing lines. Show
that the perpendicular AB from A to |
is equal to the perpendicular A'B'
from A" to I".

If I and m are two parallel, but not
limiting parallel, lines, show that their
common perpendicular AB is the
shortest distance between the two
lines. Namely, show for any other
points C € l and D € m that CD > AB.

>




40. Hyperbolic Geometry 385

40.4

40.5

40.6

40.7

40.8

Show that ends of lines behave somewhat like points, as follows.
(a) Given a point P and an end «, there exists a unique line ! passing through P and
having end «.

(b) Given two distinct ends o, ff, there exists a unique line [ having ends « and fi.

Given two lines ! and m, limiting par-

allel at one end, show that there exists

a line n, limiting parallel to (the other i
end of’) 1, and orthogonal to m.

h
Given two lines I, m, limiting parallel
at one end, show that there exists a '8
third line n, limiting parallel to the h
other ends of both I and m. "

Given two lines I, m, limiting parallel
at one end, and given a segment AB,
no matter how large or how small,
there exists a point C on [ such that
the perpendicular CD to m is equal to
AB. Hint: Take m’' perpendicular to
AB through B and let I’ be the limiting

parallel to m’ through A. Apply Exer-
cise 40.5 to both the pair [, m and the
pair I, m', and compare.

(LLL). Let I,m,n be three lines, each
limiting parallel to the other two at
opposite ends.

(a) Show that the three midlines ( Ex- (]
ercise 34.11) to the three pairs of lim-
iting parallel rays are orthogonal to
the opposite sides of the trilimit tri-
angle I,m,n, and all meet in a single
point A, which is equidistant from
I, m,n.
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(b) If I',m',n' is another such trilimit triangle, with corresponding point A, show
that the distance from A to the three sides [, m, n is equal to the distance from A’ to
the three sides I',m’, n’ of the second triangle.

(¢) Given any point P on one side of the trilimit triangle, show that the perpendic-
ulars PQ ., PR from P to the other two sides make a right angle at P.

40.9 Given two angles o, ff, with « + f§ < 2RA, show that there exists a limit triangle with
angles o, fi.

40.10 A limit guadrilateral is a figure consist-
ing of four lines [, m,n, p, with each A 3
limit parallel at opposite ends to the ? #n
next, in cyclic order. C € o

(a) If Imnp is a limit quadrilateral,
show that opposite sides are parallel B "
but not limit parallel.

(b) Show that the common orthogonals AB of [ and n and CD of m and p meet at
right angles at a point E.

(¢) Show that there exists a limit quadrilateral with AB equal to any prescribed
segment.

(d) Two such limit quadrilaterals can be moved one to the other by a rigid motion
of the plane if and only if the segment AB of the first is equal to one of the seg-
ments A'B’ or C'D’ of the second.

40.11 Show that ideal points (40.10.1) behave somewhat like regular points, as follows.
(a) Given a (regular) point P and an ideal point Q*, there is a unique line contain-
ing them both.

(b) Given an end « and an ideal point Q*, and assuming that « is not an end of the
defining line g of Q*, then there is a unique line containing Q* with end o.
(¢) Any two distinct lines have a unique generalized point in common.

40.12 You may have noticed while doing Exercise 40.11 that two ideal points do not nec-

essarily lie on a line. So we define a generalized line to be either.

(1) a regular line, together with its two ends and ideal points, or

(2) a timit line, which consists of an end o, together with all ideal points P* whose
defining line p contains #, or

(3) an ideal line, which consists of all ideal points P* whose defining line p contains
a fixed (regular) point L.

Show that the set of all generalized points of the hyperbolic plane, together with
the subsets of generalized lines, forms a projective plane (Exercise 6.3). In particu-
lar, any two generalized points lie on a unique generalized line, and any two gen-
eralized lines meet in a unique generalized point.




40. Hyperbolic Geometry 387

40.13

40.14

40.15

40.16

Let ABC be any triangle. Show that Z A A"
the external angle bisectors at A, B, C
form a “generalized triangle,” ie., a
set of three lines meeting in general-
ized points X, Y, Z Show that the in-
ternal angle bisectors of ABC, which w

meet at a point W, are the altitudes of c
the new triangle XYZ. '

X

Reverse the argument of Exercise 40.13 to prove that in any triangle ABC, the three
altitudes will meet in a generalized point.

Hint: Let BD and CE be two altitudes. C

Reflect the line DE in AB and in AC to
get two new lines, which meet at a
generalized point F. Show that B is
equidistant from the three sides of the
(generalized) triangle DEF, and from -
this conclude that F is a real point (not
an end or an ideal point). Now apply

Exercise 40.13 to the triangle DEF. X A

Conclude that BD, AF, CE meet in a

generalized point G, and that F lies on g ¢
BC, and AF is orthogonal to BC, so in \/ *
fact, AF is the third altitude of the F

original triangle.

Note that if we assume that two altitudes of the triangle meet in a (regular) point,
then the entire proof can be carried out in a Hilbert plane with no further hypoth-
esis, i.e., in neutral geometry.

Extend the theorem on (internal) angle bisectors of a triangle as follows. Consider a
generalized triangle, consisting of three nonconcurrent lines (meaning they have
no generalized point in common). Let the vertices be generalized points A, B, C.
(a) Define the analogue of an angle bisector for two lines meeting at an end or an
ideal point.

(b) Show that the three (internal) angle bisectors of the generalized triangle ABC
always meet at a (regular) point W.

(¢) Show that W is the center of an inscribed circle that is tangent to the three sides
of the triangle.

Prove the results of Exercises 35.8, 35.9 in a hyperbolic plane, without using Archi-
medes’ axiom.




