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Formalism
Around the turn of the 20th century, there was a shift towards
formalism among mathematicians. G. Frege and G. Peano
began to formalize logic and arithmetic; E. Zermelo established
axiomatic set theory; and all of this was continued by A.N.
Whitehead and B. Russell in their Principia Mathematica.

D. Hilbert gave an address, titled “Axiomatic thought,” 1917, in
which he argued that mathematicians should use mathematical
logic to develop proof theory and metamathematics in order to
determine whether or not a given set of axioms are independent
and consistent, and whether or not the theorems developed
from them are complete and decidable.

In the following years, mathematicians like K. Gödel, A.
Church and A. Turing began to address these questions using
new mathematical approaches.
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Giuseppe Peano’s axioms of arithmetic (1889)

Unity: 1. 1 ∈ ℕ.
Equality: 2. 𝑛 ∈ ℕ ⇒ 𝑛 = 𝑛. [reflexive]

3. 𝑛, 𝑚 ∈ ℕ, 𝑛 = 𝑚 ⇒ 𝑚 = 𝑛. [symmetric]
4. 𝑛, 𝑚, 𝑜 ∈ ℕ, 𝑛 = 𝑚, 𝑚 = 𝑜 ⇒ 𝑛 = 𝑜. [transitive]
5. 𝑛 ∈ ℕ, 𝑛 = 𝑚 ⇒ 𝑚 ∈ ℕ. [closed]

Successor: Where 𝑆(𝑛) ..= 𝑛 + 1,
6. 𝑛 ∈ ℕ ⇒ 𝑆(𝑛) ∈ ℕ.
7. 𝑛, 𝑚 ∈ ℕ, 𝑛 = 𝑚 ⟺ 𝑆(𝑛) = 𝑆(𝑚). [injection]
8. 𝑛 ∈ ℕ ⇒ 𝑆(𝑛) ≠ 1.

Induction: 9. 𝐾 ..= {1 ∈ 𝐾, 𝑛 ∈ ℕ, 𝑛 ∈ 𝐾 ⇒ 𝑆(𝑛) ∈ 𝐾} ⇒ 𝐾 =
ℕ.

[Peano, did not consider 0 to be a member of the natural
numbers. In those places where he used 1, we now use 0.]
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Independence

For a set of axioms to be independent means that there should be
no superfluous axioms. That is, no individual axiom should be
demonstrable from any subset of the remaining axioms.

For example, for many centuries some mathematicians believed
that Euclid’s 5th (parallel) postulate was not independent, and,
hence, tried to prove it from the other “axioms.” Eventually,
with the development of non-Euclidean geometry, and a
reinvestigation of the previous attempts to prove the 5th
postulate, it was realized that all of the previous proofs of the
postulate relied on some assumption that was mathematically
equivalent to the 5th postulate. Hence, Hilbert set out an
equivalent axiom (Playfair’s) as independent and necessary for
Euclidean geometry.
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Consistency

For an axiomatic system to be consistent, there must be no
contradictions among the axioms and the theorems that can be
derived from them. That is, in a consistent system it cannot be
possible to use some subset of the axioms to show a
contradiction with another axiom, or to derive two theorems
which contradict one another.

If you can use an axiomatic system to derive both 𝑃 and
not-𝑃—a contraction—then the system is inconsistent, and
mathematically worthless.

Hence, the question arises, given some set of axioms, is there a
general method that we can use to determine whether or not they
are consistent.
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Completeness

When an axiomatic system is complete, all statements that can be
composed of the terms defined in the system can be shown to
be either valid or invalid—that is, they can be proved to follow
from the axioms, or proved to contradict one or more of the
axioms. More loosely, it means that every true theorem can be
derived from the axioms.

That is, a system of axioms, A, is complete when given any
statement 𝑃, it is either the case that

A ⇒ 𝑃, or A ⇒ 𝑛𝑜𝑡-𝑃.

This leads to the final issue, having to do with the question of
whether or not we can know whether or not A ⇒ 𝑃, or
A ⇒ 𝑛𝑜𝑡-𝑃, for any given 𝑃.
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Decidability

An axiomatic system is decidable when we can state a general
procedure that can be used to determine, for a given 𝑃, whether
or not A ⇒ 𝑃, or A ⇒ 𝑛𝑜𝑡-𝑃. That is, irregardless of whether or
not a system is complete, does a decidability procedure exist?

For example, if we could state some procedure that would
show that A ⇏ 𝑃 or A ⇏ 𝑛𝑜𝑡-𝑃, then the system might be
incomplete, but it could still be decidable.

Might there be such a decidability procedure that could
determine in a general way whether or not 𝑃 or not-𝑃 follows
from the axioms by a finite series of steps?

In the early decades of the 20th century, a number of
mathematicians, at the urging of D. Hilbert, began to examine
these metamathematical questions.
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David Hilbert (1862–1943)

◁ Born to a middle-class Prussian
family.

◁ Educated at Göttingen, and after
some years at Königsberg, was
professor of mathematics at
Göttingen for most of his life.

◁ He and F. Klein developed an
important school of mathematicians,
of which he became the leading
figure.

◁ Developed and worked in a broad
range of areas.

◁ Advocated formalism and rigor in
mathematics.
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The 1900 International Congress of Mathematics

At the 2nd ICM, Paris, Hilbert was asked to give one of the
major, general addresses. At the suggestion of his colleague H.
Minkoski, he chose to talk about what he thought would be the
important goals of mathematics in the 20th century. He set out a
list of 10 problems (out of 23 published later) that became
deeply influential among mathematicians up to this time and
are known as “Hilbert’s Problems.”

Hilbert’s Address, 1900
“[The] conviction of the solvability of every mathematical
problem is a powerful incentive to the worker. We hear within
us the perpetual call: There is the problem. Seek its solution.
You can find it by pure reason, for in mathematics there is no
ignorabimus.”
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Hilbert’s Problem 10 (the Entscheidungsproblem)
Problem 1 Show that the cardinality of the continuum is the

next transfinite number after that of the natural
numbers.

Problem 2 Show that the axioms of arithmetic are consistent.
Problem 8 Demonstrate the Riemann hypothosis, Goldbach’s

conjecture, the twin prime conjecture, etc.

10. Entscheindung der Lösbarkeit einer diophantischen
Gleichung. (Determination of the Solvability of a Diophantine
Equation.1)

Given a diophantine equation …: To devise a process according to
which it can be determined by a finite number of operations whether
the equation is solvable in rational integers.

1A polynomial equation with integer coefficients.
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Foundations and Crisis

The goal of the foundations of mathematics was to set out a
system of logical or metamathematical axioms from which all
the valid theorems of mathematics could be derived. In order
to show that this had been done it would then be necessary to
show that these axioms were independent and consistent, and
that the system was complete and all theorems were decidable.

As time passed, however, it began to become increasingly clear
that there might be problems with this project. Bertrand Russel
(1872–1970) discovered a paradox concerning the set of all sets
that are not members of themselves, 𝑅 ..= {𝑥 | 𝑥 ∉ 𝑥}, and wrote
the Principia Mathematica with Whitehead, in which they took
hundreds of pages to prove that 1 + 1 = 2. Finally, Gödel and
Turing showed that even relatively simple sets of axioms are
not complete and not decidable.
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Gödel’s Completeness Theorem

Kurt Gödel (1906–1978) was an Austrian mathematician who
later settled in the US and worked at the Princeton Institute for
Advanced Studies.

In 1929, in his PhD thesis, Gödel demonstrated that first-order
predicate logic—a logic with relations and quantifiers—is
complete. This means that every semantically valid theorem is
syntactically derivable from the axioms. A number of simpler
versions of this proof were given over the following decades.

Although this was a significant result, it was not unexpected.
For mathematics, however, the main issue was that even the
most basic set of axioms—like Peano’s axioms of arithmetic, or
Zermelo’s axioms of set theory, required extra, purely
mathematical, ideas.
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Gödel’s Incompleteness Theorems
Gödel announced, in 1930, that he had shown that if sufficient
axioms were added to first-order logic to allow the derivation
of arithmetic, then the system was incomplete. In 1931, he
published his two incompleteness theorems.

The first theorem states that no consistent set of axioms that can
be listed by an effective procedure is capable of proving all
statements that are true of the natural numbers. The second
incompleteness theorem, which is a generalization, states that
such a system cannot demonstrate its own consistency.

The key to the proofs was an argument analogous to Cantor’s
diagonal argument. We assume a complete listing, and show
that it is incomplete. (It is often claimed that these theorems
show that all axiomatic systems are incomplete, but this is false.
Gödel had shown that first-order logic is consistent.)
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Alan Turing (1912–1954)

◁ Turing was born to a British colonial
family and his father was often away
in India.

◁ Took a first class in mathematics from
King’s College, Cambridge.

◁ Became fellow at Kings; worked with
A. Church in Princeton – took his PhD.

◁ During WWII, played a key role in
breaking German codes at Bletchley
Park.

◁ Worked on early electronic computers.
◁ Was arrested for homosexuality,

medicated, and died mysteriously.
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“On Computable Numbers…” (1936)

In 1935, in the first year of his fellowship at King’s College, he
wrote a paper called “On Computable Numbers, with an
Application to the Entsheidungsproblem.”

◁ He defines a computable number as a real number whose
digits can be computed by any finite means.

◁ Defines a idealized computing machine (Turing Machine,
TM), and introduces the idea of an enumeration of
computing machines.

◁ Argues that there is a universal computing machine
(UTM).

◁ Uses the diagonal argument—as developed by Cantor and
Gödel—to show that some numbers are not computable,
which is another way of saying that they are undecidable.
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Abstracting the Idea of Computation

“On Computable Numbers…,” 1936
Computing is normally done by writing certain symbols on
paper. We may suppose this paper divided into squares like a
child’s arithmetic book… I think it can be agreed that the
two-dimensional character of the paper is no essential of
computation. I assume then that the computation is carried out
on one-dimensional paper, i.e. on a tape divided into squares. I
shall suppose that the number of symbols which may be
printed is finite.… The behavior of the computer at any
moment is determined by the symbols that he is computing,
and his ‘state of mind’ at that moment.… Let us imagine that
the operations performed by the computer to be split up into
‘simple operations’ which are so elementary that it is not easy
to imagine them further divided.
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The Turing Machine

In order to address the question of computability, Turing
devised a conceptual model of a computing device, which was
later called a “Turing machine” (TM). It consists of a non-finite
tape, a head, and an instruction table.

◁ The tape is divided up into cells, each of which can be
blank, or contain a symbol from some finite set, {𝑠0, ..., 𝑠𝑛}.
The tape may also contain instructions for the machine.

◁ The head can read and write/erase symbols, {𝑠0, ..., 𝑠𝑛}, in
the cells of the tape, and can move one cell right or left.

◁ The instruction table issues the following possible
instructions: move right, move left, print, change state, halt.

No mechanisms for performing any of these functions are
described in the paper—the machine is purely conceptual.



… 𝑠1 𝑠1 𝑠2 𝑠2 𝑠1 𝑠1 𝑠1 𝑠2 𝑠1 … Tape

dc

b

a ⋱

e

Instruction Table

c

Head (reads, writes and moves
in either direction)
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A Basic Program

As an example, Turing gives the following “instruction table”:

State Scanned Square Operation Next state
a blank P[0], R b
b blank R c
c blank P[1], R d
d blank R a

This table starts out with a blank tape—actually, it will fail if the
tape is not blank—and prints the following sequence:

… 0 1 0 1 0 1 0 …
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The Universal Turing Machine

He then gives an idealized construction of a general
machine—that is, a general instruction table—that can read and
execute instructions coded onto the tape. In this way, the
machine can be controlled by some set of instructions coded
onto the tape itself, which acts as a stored-program.

Since any program that we like may be coded onto the tape, the
general machine can carry out any computation that an
indefinitely large set of instruction tables can carry out. That is,
the set of programs that can be run on the general machine is
the denumerable set, with cardinality ℵ0.

This conceptual machine was later called a “universal Turing
machine” (UTM), or simply a Turning machine.
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The Entscheidungsproblem (Decidability Problem)

Turing approached the Entscheidungsproblem by an argument
that was explicitly analogous to the diagonal argument
developed by Cantor to show that the reals are
non-denumerable. He argued that if we set all of the
computable numbers out in a denumerable table—for example,
we have a TM to compute 2, another for √2, another for 𝜋, and
so on—then we can define a number by the diagonal process.
Then we can ask whether or not another TM can be written
which can compute that number. That is, whether or not it is
possible to decide if the process of defining that diagonal
number halts. Turing showed that this is not always possible.

The generalization of this claim involves the following
assumption.
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The Church-Turing Thesis

The Church-Turing thesis is the claim that any computation
that can be carried out by a rote method—a well-defined
effective procedure—can be carried out by a UTM. That is, a
UTM “can do anything that could be described as ‘rule of
thumb’ or ‘purely mechanical.’”

This is a definition of the concept of “computable” to mean
anything that can be carried out on a UTM. An extension of this
is the claim that any process that can be carried out on one
UTM can also be carried out on any other UTM.

It is sometimes claimed that this means that a UTM can carry
out any computation that can be carried out by any machine,
but this is not true—a quantum computer or analog machine
that incorporates a random mechanism are clear
counterexamples.
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Claude Shannon’s Logic Circuits

In 1854, George Boole (1815–1864) had published the Laws of
Thought, in which he showed that an algebra on binary
arithmetic could be used to codify classical logic and extend it
to expressing and solving equations.

In 1936, Claude Shannon (1916–2001) enrolled at MIT as a
master’s student under Vannevar Bush, working on Bush’s
differential analyzer – an analog computer that had to be
manually set for every equation it solved. In 1938, in his MS
thesis, A Symbolic Analysis of Relay and Switching Circuits,
Shannon showed that electric logic circuits could be used to
simplify the electromechanical relays then in use in telephone
networks, and that, in general, these circuits could solve any
problem that Boolean algebra could solve. He also gave a few
examples of basic circuits.



Alan Turing and the Foundations of Computer Science
Computation and Computers

Vannevar Bush’s Differential Analyser



Alan Turing and the Foundations of Computer Science
Computation and Computers

The Concept of the Stored-Program Computer

Contained in Turing’s 1936 paper was a concept that would
play a fundamental role in the development of computers as
technological objects—namely, the idea of the stored-program
calculator, or computer. The key idea is that the logical control
and arithmetic functions could be written into the core of the
UTM, and any auxiliary program could be written out on the
tape and read in as necessary.

This idea was popularized by John von Neumann (1903–1957),
a Jewish-Hungarian mathematician who immigrated to the US.
He worked closely with American engineers and encouraged
them to read Turing’s 1936 paper. Von Neumann later went on
to write a government report called “First Draft of a Report on
the EDVAC.” This report introduced the idea of the
stored-program computer to a wider readership of engineers.
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British Codebreaking in WWII
Starting in 1926, the German military adopted the use of the
Enigma encoding machine, made by the firm Scherbius &
Ritter. The Dutch, Japanese, and Italian militaries followed.

Before the outbreak of war, the Poles bought an Enigma and
their mathematicians designed a machine, the Bomba, to
decode it. When they realized the Germans were going to
attack, they gave the machines to the British and the Polish
mathematicians taught the Brits what they had learned.

The British government set up a code-breaking division at
Bletchley Park, where they built “Bombes” and eventually
Colossus computers, to decode the new German Lorenz
encoders. The first Colossus used 1,500 vacuum tubes and read
paper tape at 5,000 characters per second. The Colossi
decrypted around 63,000,000 characters of German code.



A German Enigma Machine
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The Enigma Machines

The Enigma machines were a series of rotor cipher machines
that combined mechanical rotors with electrical sub-systems.
Mechanical: Keyboard for the input letters, rotating disks on a

spindle, a stepping mechanism to rotate the disks.
Electrical: A circuit that varied with different rotor positions,

a plugboard that could be reconfigured by the
operator, and lamps for the output cipher letters.

Both German operators had a series of daily keys that they
would use to set up the machines. Then the transmitter would
enter letters on the keyboard and the lamp would indicate the
output characters. This message would be transmitted
normally on open radio, and as long as the receiving operator
had the same set-up, they could enter the cyphers and receive
normal German output.
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Turing at Bletchley Park
Bletchley Park was a manor house that had been converted to
the use of the Government Code and Cypher School. Here
Turing worked on a team with a number of other
mathematicians and engineers. Based on the previous work of
the Poles, in 1939, Turing and Gordon Welchman designed a
Bombe that could elecro-mechanically search for a certain
string—called a crib—at a rate of 20 positions per second.
When the Bombe stopped, the positions would be tried on an
Engima to see if it produced German. If not, they would keep
going, if so, the messages for that section of the German
military could be read in near real time for the rest of the day.
The following day the whole process would begin again.
In 1943, T. Flowers built the Colossus, a large-scale electronic
computer based on designs by Max Newman, one of Turing’s
mathematics professors, to decrypt the new Lorentz machines.
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Turing’s Version of the Bombe (Reconstruction)
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A Bombe machine in the US
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The Colossus at Bletchley Park
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Turing at the National Physical Laboratory (NPL)

At the NPL in Bushy Park, London, Turing set out the designs
for an electronic stored-program computer, called the
Automatic Computing Engine (ACE). In 1946, he wrote a report
called “Proposed Electronic Calculator” that included many of
von Neumann’s ideas, but also set out detailed designs for logic
control and programming.

However, because of the secrecy about the work at Bletchley
Park, Turing was not able to tell the engineers about the
Colossus, and they did not believe that it was possible to build a
fully electronic devise—also Flowers, who had been at Bletchley
Park, could not be employed to do the job. Hence, Turing’s full
design was not implemented and at first only a pilot ACE was
built. In 1948, Turing left the NPL and moved to Manchester.
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Turing at Manchester

At Manchester, Turing joined Newman’s group, including the
engineers Williams and Kilburn, who were working on the
Manchester Baby, and the Mark I, which were
fully-implemented, electronic, stored-program
computers—having worked with and been influenced by the
people at both Bletchley Park and the Moore School in the US.

When he arrived at Manchester, Turing finally had a fully
functional general-purpose electronic computer to work with.
He designed the input mechanism, the programming system
and wrote a programming manual. Here, he frustrated the
engineers by working directly in the base-32 of the machine,
since he found it more efficient to program in this base system
than to convert everything back and forth between decimal.
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Artificial Intelligence

Before he started at Manchester, Turing took a sabbatical at
King’s College and wrote a report called “Intelligent
Machinery” (IM). This was a highly philosophical paper that
summarized many of his ideas on machine intelligence in
which he introduced the concepts of logic-based problem
solving and genetic or evolutionary search. He claims in this
paper that “intellectual activity consists mainly of various
kinds of search.” (At Manchester, Turing wrote one of the first
chess programs—purely on paper.)

A major concept of the IM paper was that unorganized
machines could act like neurons and by following simple rules
organize themselves into networks—now called Turing
nets—and eventually carry out general computation.
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Artificial Life
In the final years of his life, Turing worked in the field that is
now known as artificial life (A-life). The goal of A-life is to
produce a theoretical understanding of the way that organisms
self-organize.

Turing used the early Ferranti computers (the commercial
versions of the Mark I) to study the spontaneous formation of
structure related to early cell division in embryos; symmetrical
structures in shell fish, starfish and flowers; the arrangement of
leaves and branches in plants; and color patterns, such as spots
and striping on animals and fish.

Unfortunately, in the middle of this work, he died. It is
generally believed that he committed suicide, but there are
problems with this interpretation (coroner’s report mentions
violence, no evidence of depression, etc.).
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The Development of Computer Science
The Turing machine notion of computability, the Church-Turing
thesis, and the stored-program concept of the computer were
all developed originally to show that certain mathematical
problems were undecidable—that is, to show mathematical
and logical limits to what is possible in mathematics.

To Turing himself, however, and to the first generation of
computer programers—on paper—and engineers, more
interesting questions soon began to circulate around what
could actually be done with these Turing machines.

The new computer science stimulated work in mathematics in
various ways—attention to detail around computation and base
systems, new logical theories to study the structural similarities
between programs and proofs, new experimental methods for
investigating mathematical claims, and so on.


	Outline
	Introduction
	Hilbert's Program
	Foundations and Crisis
	Alan Turing and the Decidability Problem
	Computation and Computers

