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~ t takes a good  deal  of historical imag- 
ination to picture the kinds of de- 
bates that accompanied  the slow 

process  which ultimately led to the ac- 
ceptance of non-Euclidean geometry a 
little more than a century ago. The dif- 
ficulty stems mainly from our tendency 
to think of geometry  as a branch of pure  
mathematics rather than as a science 
with deep  empirical roots, the oldest 
natural science so to speak. For many 
of us, there is a natural tendency to 
think of geometry in idealized, Platonic 
terras. So to gain a sense of how late- 
nineteenth-century authorities debated  
over  the true geometry  of physical  
space, it may help to r emember  the 
etymological  roots of the word  geome-  
try: geo plus metria literally meant to 
measure the earth. In fact, Herodotus  
repor ted  that this was originally an 
Egyptian science; each spring the Egyp- 
tians were  forced to remeasure the land 
after the Nile River f looded its banks,  
altering proper ty  lines. Among those 
engaged  in this land survey were  the 
legendary Egyptian rope-stretchers, the 
harpedonaptai, who were occasionally 
depic ted  in artwork relating to Egyp- 
tian ceremonials. 

We are apt to smile when  reading 
Herodotus 's  remarks, dismissing these 
as just another  example  of the Greek 
tendency  to think of ancient Egypt as 
the fount of all wisdom. Herodotus  was 
famous for repeat ing such lore, and 
here he was apparent ly  confusing 
geometry  with the science of geodesy,  
and the latter has little to do with the 
former; at least not anymore.  We do not 
customarily think of circles, triangles, or 
the five Platonic solids as real figures: 
they are far too perfect, the products  of 
the mind's  eye. Of course, there is still 
plenty of room for disagreement.  A for- 
malist will stress that geometrical  figures 
are mere convent ions or, at best, im- 
ages we attach to fictive objects that 
have no purpose  other than to illustrate 

a system of ideas ult imately g rounded  
in undef ined terms and arbitrary ax- 
ioms. A modern-day  Platonist wou ld  ve- 
hemently object to this characterization, 
which puts too much emphasis  on 
purely arbitrary constructions rather 
than conceiving of geometrical  figures 
as idealized instantiations of perfect 
forms. 

Those who  might like to see what  
such a debate  looked  like a round  1900 
need only read the cor respondence  be- 
tween the phi losopher  Gott lob Frege 
and the mathematician David Hilbert 
[Gabriel 1980]. Their dispute began  
when  Frege wrote Hilbert after reading 
the opening  pages of Hilbert 's  Foun- 
dations of Geometry [Hilbert 1899], the 
work  that did so much to make  the 
modern  axiomatic approach  fashion- 
able. Although one of the founding fa- 
thers of modern  logic, Frege simply 
could not accept Hilbert 's content ion 
that the fundamental  concepts  of geom- 
etry had no intrinsic meaning when  
seen from a purely logical point of view. 
For Frege, points, lines, and planes 
were not simply empty  words.  They 
were in some deep  sense real; geome-  
try was the science that s tudied the 
propert ies  of real figures c o m p o s e d  of 
them. Hilbert, to be sure, was by  no 
means adw)cating a modern  formalist 
approach  to geometry  that b roke  with 
the classical tradition. In essence,  his ax- 
ioms for Euclidean geometry  were  
merely a refinement of those presented  
in Euclid's Elements. In 1905 he em- 
phasized that "the aim of every science 
i s . . .  to set up  a ne twork  of concepts  
based  on axioms to which we  are led 
naturally by intuition and experiencg' 
[Corry 2004, 124]. Hilbert thus recog- 
nized the empirical  roots of geometri-  
cal knowledge,  but  he also emphas ized  
that the quest ion as to how and why  
Euclidean geometry  conformed to our 
spatial percept ions  lay outside the reahn 
of mathematical  and logical investiga- 
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tions. For these, all that mattered at bot- 
tom was proving the consistency of a 
certain set of axioms. This reductionist 
viewpoint was sheer anathema in the 
eyes of Gottlob Frege. 

Most mathematicians, to the extent 
that they grasped what was at stake, 
sided with Hilbert in this debate. Over 
the course of the next three decades the 
status of the continuum nevertheless 
played a major role in the larger foun- 
dations debates between formalists and 
intuitionists. Those rather esoteric dis- 
cussions, however, left traditional real- 
ist assumptions about the nature of geo- 
metrical knowledge behind. For despite 
their strong differences, the proponents 
of formalism and intuitionism were both 
guided by their respective visions of 
pure mathematics, independent of its 
relevance to other disciplines, like as- 
tronomy and physics. 

This suggests that a fundamental shift 
took place around 1900 regarding the 
status of geometrical knowledge. This 
reorientation was certainly profound, 
but it seems to have been rather quickly 
forgotten in the wake of other, even 
more dramatic developments. Soon af- 
terward Einstein's general theory of rel- 
ativity would lead to a flurry of new dis- 
cussions about the interplay between 
space, time, and matter. Leading math- 
ematicians like Hilbert and Hermann 
Weyl became strong proponents of Ein- 
stein's ideas, even as they sharply dis- 
agreed about epistemological issues re- 
lating to the mathematical continuum, a 
concept of central importance for the 
geometer. 

Looking backward from the 1920s, it 
would seem that the opposing views of 
formalists and intuitionists actually re- 
flect distinctly modern attitudes about 
the nature of geometrical knowledge 
that would have been scarcely think- 
able prior to 1900. Up until then, geom- 
etry was always conceived as somehow 
wedded to a physical world that dis- 
played discernible geometrical features. 
Take the developments that led to the 
birth of modern science in the seven- 
teenth century: anyone who studies the 
works of Copernicus, Kepler, Galileo, 
or Newton cannot help but notice the 
deep impact of geometry on their con- 
ceptions of the natural world. But the 
same can be said of Gauss, whose ca- 
reer ought to make us rethink what 

Herodotus wrote about the Egyptian 
roots of the science of geometry. 

Gauss, Measurement, and 
the Pythagorean Theorem 
Gauss, after all, was not only a mathe- 
matician and astronomer, he was also 
a professional surveyor who at least oc- 
casionally waded through the marshy 
hinterlands of Hanover taking sightings 
in order to construct a net of triangles 
that would span this largely uncharted 
region [BOhler 1981, 95-103]. This work 
helped inspire a profound contribution 
to pure geometry: Gauss's study of the 
intrinsic geometry of surfaces, which 
helped launch a theory of measurement 
in geometry that opened the way to 
probing the geometry of space itself. 
Only about a half century earlier, two 
leading French mathematicians, Clairaut 
and Maupertuis, had studied the shape 
of the earth's surface, showing that it 
formed an oblate spheroid. As one 
moved northward, they discovered, the 
curvature of the earth flattened, just as 
Newtonian theory predicted. Mauper- 
tuis's celebrated expedition to Lapland 
brought him fame and the nickname of 
"the earth flattener." It also provided the 
French Academy with stunning proof 
that Descartes's theory of gravity could 
not be right, thereby overcoming the 
last major bastion of resistance against 
Newtonianism in France. Thus precise 
measurements of the earth's curvature 
had already exerted a deep impact on 
modern science. 

In the 1820s Gauss took the mea- 
surement of the earth as his point of 
departure for an abstract theory of sur- 
faces, asking whether and how a sci- 
entist could determine the curvature of 
an arbitrary surface through measure- 
ments made only along the surface it- 
self, without knowing anything at all 
about the way in which the surface 
might be embedded in space. To talk 
about curvature as an intrinsic property 
of a surface requires a careful recon- 
sideration of concepts like the measure 
of distances between points and angles 
between curves. So let's briefly review 
the historical role of measurement in 
geometry. 

Consider the Pythagorean Theorem, 
a ubiquitous result familiar to many cul- 
tures and already found by Babylonian 
mathematicians more than a millennium 

before the time of Pythagoras. It tells us 
something fundamental about planar 
measurements in right triangles: the 
square on the hypotenuse equals the 
sum of the squares on the two other 
sides. Some have conjectured that the 
Egyptian harpedonaptai, whom Dem- 
ocritus once praised, used the converse 
of the Pythagorean Theorem to lay out 
right angles at the corners of temples 
and pyramids. The claimants suggest 
that these professional surveyors used 
a rope tied with 12 knots at equal dis- 
tance from each other; by pulling the 
rope taut, they could form a 3-4-5 right 
triangle. It's a nice idea, but nothing 
more. Archaeologists can still measure 
the angles of Egyptian buildings, of 
course, but our access to the mathe- 
matical knowledge that lay behind the 
architectural splendours of ancient 
Egypt is highly limited. Papyri can eas- 
ily disintegrate with time, and only two 
have been found that provide much in- 
sight into the mathematical methods of 
the time: the Rhind and Moscow papyri, 
which were presumably used as train- 
ing manuals for Egyptian scribes. Nei- 
ther contains anything close to the 
Pythagorean Theorem. 

Historians of Mesopotamian mathe- 
matics have been luckier; they have had 
plenty of source material available ever 
since it became possible to decipher the 
clay cuneiform tablets archaeologists 
began turning up a little more than a 
century ago. Some of the Babylonian 
mathematical texts reveal not just a 
passing familiarity with the Pythagorean 
Theorem but even a masterful use of it 
for numerical computations, like ap- 
proximating the value of ~ or calcu- 
lating Pythagorean triples. Herodotus 
claimed that "the Greeks learnt the 
rroAog, the gnomon, and the twelve 
parts of the day from the Babylonians" 
[Heath 1956, vol. 1, 370]. 

Still, justly or not, we tend to credit 
the Greeks with being the first to give 
a proof of this ancient theorem. But 
since nearly all information about early 
Greek mathematical texts is lost, we can 
only speculate about the context of dis- 
covery; we know nothing about the 
original proof itself. What we can ob- 
serve is that right triangles play a cen- 
tral role in Euclid's Elements [Heath 
1956, vol. 1]. Moreover, the Pythagorean 
Theorem and its converse appear as 1.47 
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Figure I. Returning from the Lapland Expedition, Maupertuis became famous as the 
"Earth Flattener" who confirmed Newton's theory. 

and 1.48, the two culminating proposi- 
tions in Book I of  the Elements. There- 
after Euclid makes use of it in several 
of the most important propositions of 
Books II and III. 

Euclidean Traditions and 
anschauliche Geometrie 
Today we talk about various models for 
all kinds of geometries and spaces, 

without realizing that this is a distinctly 
modern way of thinking. Classically, 
geometry was always about figures in 
space, whereas space itself was never 
the object of study. One did not go 
about thinking of different kinds of 
spaces, or even space in the plural. 
True, nineteenth-century mathemati- 
cians differentiated between the metri- 
cal and projective properties of curves 

and surfaces, and they used calculus to 
study their differential properties. By 
mid-century they had even begun to 
leap by analogy into higher dimensions, 
and above all they liked to use com- 
plex numbers in connection with a 
mathematical realm of four dimensions. 
But to the extent they identified them- 
selves as geometers, mathematicians 
drew their inspiration from phenomena  
they could somehow visualize or imag- 
ine in ordinary Euclidean space. 

In the German tradition one spoke 
of  anschauliche Geometrie, a term that 
does not really translate well into Eng- 
lish. The popular textbook with this title 
by Hilbert and Cohn-Vossen, published 
in the United States as Mathematics and  

the Imagination, serves as a reminder 
that Hilbert by no means held to a nar- 
row formalist view, despite the influ- 
ence of his work on axiomatization. In 
the preface, he wrote: 

In mathematics, as in any scientific 
research, we find two tendencies 
present. On the one hand, the ten- 
dency toward abstraction seeks to 
crystallize the logical relations in- 
herent in the maze of  material that 
is being studied, and to correlate the 
material in a systematic and orderly 
manner. On the other hand, the ten- 
dency toward intuitive understand- 
ing fosters a more immediate grasp 
of the objects one studies, a live rap- 
port with them, so to speak, which 
stresses the concrete meaning of 
their relations. [Hilbert and Cohn- 
Vossen 1965, preface]. 
It would be exaggerated to call 

Hilbert-Cohn-Vossen a "picture-book" 
approach to geometry, but without the 
visuals their text would certainly lose 
its effectiveness. Throughout  much of 
Western history, the discipline of geom- 
etry was closely linked with logic. But 
many experts appreciated that the 
source of geometrical knowledge owed 
nothing to logical rigor. Hilbert and 
Cohn-Vossen make this abundantly 
clear: they mainly just describe and ex- 
plain what the reader is supposed to 
see. This kind of seeing, though, re- 
quires imagination, and to be imagined 
a figure or configuration must have 
some relation to objects in real space, 
which takes us back to Euclid again. 

Euclidean geometry, in its original 
garb, was traditionally regarded not as 
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one model among many for geometry,  
but  rather as the model for a rigorous 
scientific system based  on deductive ar- 
gument.  As late as the 1880s, Charles 
Dodgson,  better known  today as Lewis 
Carroll, was a valiant spokesman  for this 
conservative approach  to teaching 
geometry.  The tightly constructed argu- 
ments in the first two books  of  Euclid's 
Elements left an indelible impression on 
the logician Carroll. 

In Euclid and his Modern Rivals [Car- 
roll 1885], one of  the oddes t  dramatic 
works  ever written (and surely never  
performed),  Carroll brought  Euclid's 
ghost  back to life to face his challengers.  
This play without  a plot  quickly turns 
into a bizarre mathematical  dialogue in 
which Euclid defends his text and 
leaves it to the judges in Hades  to de- 
cide whether  any of the thirteen other  
modernized  treatments of  p lane geom- 
etry deserved to take its place. The 
showdown that ensues has all parties 
citing the Elements, chapter  and verse, 
scurrying to discover which textbook 
most effectively honed  the minds of 
young Englishmen. Just to be sure that 
you have the right picture here: the au- 
thors whose  books  come under  discus- 
sion are all respectable English gentle- 
men, among the leading mathematicians 
of their day. So these rival texts obvi- 
ously did not breathe a word  about  the 
new-fangled non-Euclidean geometries  
that had since found their way  across 
the channel  from the Continent. Such 
monstrosities clearly had no place in 
the college curriculum. Euclid's rivals 
merely sought to upgrade  the very same 
body  of knowledge  one found in the 
Elements. Needless to say, the author  of 
Alice in Wonderland gave Euclid's 
ghost full satisfaction, routing the thir- 
teen rivals with scholarly acumen and 
witty jibes. Nor should we  be surprised 
that the meatiest  arguments  on both 
sides were reserved for Euclid's con- 
troversial fifth postulate concerning par- 
allel lines: 

That if a straight line falling on two 
straight lines makes  the interior an- 
gles on the same side less than two 
right angles, the straight lines, if pro-  
duced  indefinitely, will meet  on that 
side on which  the angles are less 
than two right angles. 
Historically, mathematicians had 

long focused attention on this parallel  

postula te  as the crux of  wha t  made  Eu- 
clid's presenta t ion of  geometry  Euclid- 
ean. 

Some of Euclid's modern  rivals pre- 
ferred Playfair's more elegant formula- 
tion: 

Playfair's Axiom.. Given a line I and 
a point  P not  on it, there exists no more 
than one line through P parallel  to /. 

"The description o f  right 
lines a n d  circles, upon 

which geometry is founded ,  
belongs to mechanics. 

Geometry does not  teach 
us to draw these lines, but  

requires them to be 
drawn."  [Newton 1 726] 

But Lewis Carroll clearly disagreed 
with them [Carroll 1885, 40-47, 77-84]. 
His arguments  seem to me both sound 
and convincing. Playfair's version of the 
Parallel Postulate is in the spirit of an 
existence theorem in modern  mathe- 
matics; it lacks the constructive charac- 
ter that makes  Euclid's rendit ion so use- 
ful. Euclid's Fifth Postulate thus enables  
the geometer  to know in advance not 
merely that two lines, when  extended,  
will intersect, but  also where the point 
of intersection will occur, namely  on the 
side where  the angle sum is smaller 
than two right angles. Euclid makes  cru- 
cial use of this property,  for example,  
in Prop. 1.44 while executing a para- 
bolic appl icat ion of area for a given tri- 
angle. Carroll clearly unders tood the 
distinction be tween  theorems and prob-  
lems in geometry.  He even has Euclid's 
ghost  address  the proposal  by the 
British Committee for the Improvement  
of Geometrical  Teaching that called for 
presenting theorems and problems sep- 
arately. 

What about 
Spherical Geometry? 
Over time, mathematicians came to re- 
alize that the Pythagorean Theorem is 
mathematically equivalent  to the paral- 
lel postulate,  and both are equivalent  to 
the proposi t ion  that the sum of the an- 
gles in a triangle equals 180 ~ But why  
did the Greeks feel compel led  to limit 
geometry  to what  we now see as one 
special case? Clearly they were familiar 

with another  alternative, since we  can 
still read ancient works  on spherics,  or 
what  came to be  known  as spherical  
geometry.  The shortest distance be- 
tween  two points  on the surface of a 
sphere  forms the arc of a great circle. 
Taking such geodesics  as the counter- 
parts to straight lines in the plane,  it is 
easy to see that the sum of the angles 
in a spherical  triangle exceeds  180 ~ (this 
angle sum varies: the smaller the trian- 
gle, the smaller the sum of its angles) 
But if the Greeks  already knew several 
fundamental  results of spherical geom- 
etry, why  did it take so long for math- 
ematicians to accept  the validity of  non- 
Euclidean geometries? Why did they not 
realize that the geometry  on the surface 
of a sphere  a l ready provided  a coun- 
terexample  to Euclid's theory of paral- 
lels? The answer  to this puzzle deserves 
serious scrutiny as it not only tells us a 
good  deal  about  the intellectual context 
of geometrical  investigations in antiq- 
uity but  also how the discipline of 
geometry  was perce ived  for many cen- 
turies afterward. 

If we  widen  the scope  of our inquiry 
into the ancient sciences, it becomes  
clear that spherics was s tudied for many 
centuries as a foundat ion for the higher 
disciplines of as t ronomy and astrology. 
For example ,  we  learn from Aristotle 
that the early fourth-century B.C. geome-  
ter Eudoxus of  Cnidus deve loped  a the- 
ory of homocentr ic  spheres to study 
heavenly bodies,  including the retro- 
grade mot ion  of planets  like Mars. 
About  a century later a contemporary  
of Euclid, Autolycus of  Pitane, wrote  On 
the Moving Sphere, one of the oldest  ex- 
tant mathematical  texts. Another  related 
work  by the same author, On Risings 
and Settings', describes the paths of the 
sun and stars throughout  the year. A 
more poet ic  account  of the geometry  of 
the heavens  can be found near  the be- 
ginning of Plato's Timaeus, where  he 
describes how the cosmos was con- 
structed by the Demiurge using two 
great circles. These works  s tood at the 
beginning of  a long tradition, typified 
by the work  of the thir teenth-century 
Augustinian cleric John of Holywood,  
better  known  as Johannes  de Sacro- 
bosco,  whose  Sphaera was widely  stud- 
ied by European as t ronomers  up until 
the time of  Christoph Clavius, an older  
contemporary  of  Galileo. By studying 
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Sacrobosco, one could learn the rudi- 
ments of spherical geometry, enough 
for an ambitious reader to proceed on 
to Ptolemy's Almagest. Yet there is 
something fundamentally wrong with 
this formulation. For by combining 
spherics with geometry to describe a tra- 
dition that extended from Autolycus to 
Sacrobosco, I have invoked a hybrid con- 
cept--spherical geometry--that makes 
no sense within that historical setting. 

In the ancient world, the motions of 
heavenly bodies were thought to be 
perfectly circular, unlike the natural mo- 
tions of terrestrial objects, which rise or 
fall as they seek their natural place in 
the world. Physical objects, as we know 
them here on earth, move about in the 
space surrounding us. The traditional 
purpose of plane and solid geometry 
was to study the properties of simple, 
idealized figures in this terrestrial realm. 
Whether or not the roots of this science 
were Egyptian, it surely drew on cen- 
turies of human experience with phys- 
ical objects in space. To fill up parts of  
space, builders used bricks of a uniform 
size and shape, rectangular solids, not 
round ones or solids with curved sur- 
faces. Straightness and flatness were the 
primary spatial qualities one imagined 
in everyday life. A solid, such as a 
sphere, was obviously in some basic 
sense a more complex object than a 
solid figure bounded  by plane figures. 
Both are treated in the last three books 
of Euclid's Elemen& but it is clear that 
the latter figures, particularly the five 
Platonic solids, were regarded as fun- 
damental. Some of these regular solids 
occur in nature in crystalline forms, and 
Plato identified four of them as the 
shapes of the four primary elements: 
earth, water, air, and fire. For the 
Greeks, the sphere had a deep cosmic 
significance: the planets and fixed stars 
were conceived as carried about on gi- 
ant invisible spheres. The natural rota- 
tional motion of spheres could be sim- 
ulated here on earth, of course, but the 
truly natural motions of terrestrial ob- 
jects were rectilinear: straight up and 
down. Of course the earth itself was not 
seen as fiat, but it was mainly on a cos- 
mic scale that the sphere came force- 
fully into play in Greek science. 

These distinctions were described in 
detail by Aristotle, who drew heavily on 
earlier authors. By the period of Euclid, 

who lived shortly after Aristotle, around 
300 B.C., they had become firmly es- 
tablished categories. Astronomy and 
physics had virtually nothing to do with 
each other. Whereas spherics belonged 
to the former, geometry had close ties 
to ancient mechanics, which was not a 
branch of natural science at all, but 
rather was synonymous with ancient 
technology. Mechanicians constructed 
machines just as geometers constructed 
figures and diagrams. Among the 
Greeks, Archimedes was a virtuoso in 
both disciplines. Indeed, his work suc- 
cessfully bridged the gap between me- 
chanics and geometry, as he relied 
heavily on the law of the lever to 
"weigh" geometrical figures before 
proving theorems about their areas and 
volumes. Geometry's close links to tech- 
nology, machines, and the science of 
mechanics became even stronger after 

the works of Archimedes were taken up 
by the mathematicians of the Renais- 
sance. Only with the Copernican Revo- 
lution did this bifurcated worldview 
come to an end. Galileo, the mechani- 
cian, sought to refute both Ptolemy and 
Aristotle, but it took the even more 
daring ideas of Kepler and Newton to 
finish the job. In the course of doing 
so, the prospect of an infinite space 
emerged for the first time. 

On the Shoulders 
of Ancient Giants 
Newton effectively created the disci- 
pline of celestial mechanics in his Prin- 
cipia [Newton 1687]. In the forty years 
remaining to him, he had ample time 
to comment on his legendary success, 
and his assessments have been repeated 
countless times. It is tempting to dis- 
count his famous pronouncement  that 

Figure 2. In Kepler's Mysterium Cosmograpbicum, the five Platonic solids structured 
the Universe. 
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he "stood on the shoulders of  g i a n t s " -  
on most occasions Newton was not 
prone to such modes ty- -but  perhaps 
we can make sense of  this by asking 
just whose shoulders he might have had 
in mind. 

We might start by reading the pref- 
ace to the Principia: "The description 
of right lines and circles, upon  which 
geomeFy is founded, be)ongs to me- 
chanics. Geometry does not teach us to 
draw these lines, but requires them to 
be drawn" [Newton 1726]. Newton went 
on to mention briefly the conception of 
mechanics set forth by Pappus of 
Alexandria around 300 A.D. In his Col- 
lection Pappus described five types of 
machines designed to save work, a con- 

cept that Newton's system of mechanics 
would help quantify. This is the tradition 
of terrestrial mechanics represented by 
Archimedes and later by Leonardo da 
Vinci and Galileo. None of these Re- 
naissance figures ever dreamed, of 
course, that the heavens themselves 
might be understood as a giant ma- 
chine. That was Newton's grand vision, 
made famous by 1he image of a Deity 
that designed the worm like an intricate 
clock. 

Newton was ahead of his time in so 
many respects that it is easy to overlook 
how steeped he was in the traditions of 
the past. Unlike Descartes, he revered 
Euclid and the ancients, and this surely 
accounts for the arcane geometric style 

of the Principia. Not that he was merely 
paying homage to the ancients or try- 
ing to accommodate  modern readers, as 
some historians of physics have sug- 
gested. Since most physicists learn 
celestial mechanics based on the ana- 
lytic methods first developed by Euler, 
D'Alembert, and others, they have a 
hard time squaring what they find in the 
Principia with their image of Newton as 
co-founder of  the calculus. Thus some 
have occasionally argued that Newton 
must have originally derived the results 
in his Principia by using the calculus. 
He then supposedly chose to couch the 
whole thing in the language of tradi- 
tional geomeu 7 in order not to over- 
whelm readers with mathematical ter- 
minology and techniques that were new 
and unfamiliar. There seems not to be 
a scintilla of evidence to support this 
claim, nor do l know of any leading 
Newton scholar who  thinks that New- 
ton just dressed up the Principia in 
geometry to make it easier to swallow 
(if he had done so, we would have to 
conclude that he failed pretty miserably, 
since his contemporaries found it a very 
tough read, too). What we do find in 
Newton's published and unpublished 
writings are numerous explicit state- 
ments and arguments expressing why 
he preferred to use geometry as the nat- 
ural mathematical language for treating 
problems in mechanics. And by geom- 
etry, he meant traditional synthetic 
geometry in the tradition of Euclid and 
the Greeks. 

Newton believed that space had an 
absolute reality that endowed  it with 
physical properties and geometrical 
structure. He attributed inertial effects 
like the centrifugal forces that accom- 
pany rotations to the effort required to 
move against the grain of  space, so to 
speak. His first taw, describing the na- 
ture of force-free motion, tells us what 
it means to move with the grain of  ab- 
solute space, namely in a straight line 
with uniform speed. The principle of 
relativity, in its original form, is then a 
simple consequence of Newton's first 
two laws. Because the laws of me- 
chanics all deal with forces acting on 
bodies, and because these forces are 
directly linked to accelerations by New- 
~on's second law, no  physical experi- 
ment can distinguish between two in- 
ertial frames of reference. Both move 
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with uniform velocity with respect  to 
absolute  space and hence  with respect  
to each other. So no accelerat ions arise, 
unlike Newton 's  famous example  of the 
rotating water  bucket.  

Leibniz and others objected vocifer- 
ously to Newton's  quasi-theological 
doctrines regarding absolute space and 
time. But toward the end of the eigh- 
teenth century Immanuel  Kant gave 
them a central place in his epistemol-  
ogy. Kant's Critique of  Pure Reason was 
widely  regarded as a tour de force that 
tamed the excesses of Continental ra- 
tionalism and metaphysics while over- 
coming the scepticism of Humean em- 
piricism. Newtonian space and time 
provided  Kant with the keys that led to 
a new synthesis. He argued that our 
knowledge  of space and time had an 
utterly different character than all other 
forms of knowing: it was neither ana- 
lytic nor  a posterior--meaning that we 
cannot  know the propert ies  of space 
and time by means  of deductive rea- 
soning nor  by appeal ing  to sense ex- 
perience.  Nevertheless, we can formu- 
late true synthetic a priori proposit ions 
about  them because  they provide the 
foundat ions for all other forms of 
knowledge.  Thus, according to Kant, 
space and time are the necessary 
precondit ions for knowing; they supply  
the t ranscendent  categories that give 
mankind the ability to know. (This was 
heady  stuff, of course, but Kant's views 
were enormously influential throughout  
the nineteenth century, an era when  
professional phi losophers  were  still 
widely read.) 

Gauss and the Intrinsic 
Geometry of Surfaces 
In different ways Euclid, Newton, and 
Kant were still massive authorities dur- 
ing the nineteenth century, and each re- 
inforced the established view that space 
carried a geometrical structure that was 
Euclidean. That position seemed invul- 
nerable throughout most of the century, 
in part because no other mathematical 
alternative seemed conceivable. It was 
not until the 1860s that mathematicians 
began to take the possibility of a non- 
Euclidean geometry seriously, this de- 
spite the fact that Carl Friedrich Gauss 
had entertained this idea throughout 
much of his career. In 1817 Gauss wrote 
to a colleague: "I am coming more and 

more to the conviction that the necessity 
of our geometry cannot be proved . . . .  
Geometry should be ranked not with 
arithmetic, which is purely aprioristic, but 

with mechanics." [Dunnington 2004, 180] 
Ten years later, the "Prince of Math- 

ematicians" publ ished his pioneering 
work  on the intrinsic geometry  of sur- 
faces in which he introduced the no- 
tion we today call Gaussian curvature 
[Gauss 1828]. In one sense, this not ion 
was a refinement of the classical not ion 
of curvature introduced by Leonhard 
Euler in the eighteenth century. In 
Euler's theory there are two principal  
curvatures associated with each point  of 
a surface. These are ob ta ined  by tak- 
ing the surface normal  at each point  as 
the axis for a penci l  of planes.  Euler 
p roved  that by rotating these p lanes  

"I  a m  c o m i n g  more  a n d  
more  to the convic t ion  

that  the necessity o f  our  
geomet ry  c a n n o t  be 

p r o v e d  . . . .  "[C. F. Gauss] 

about  this axis there  will be two par- 
ticular ones  that cut the surface in 
curves with a maximum and min imum 
plane  curvature at the given point.  
Moreover,  these two special  p lanes  will 
a lways be pe rpend icu la r  to one  an- 
other. Thus they de te rmine  two prin- 
cipal directions with plane curvatures 
K1, K2. These, however ,  are not intrin- 
sic invariants of the surface since they 
d e p e n d  on  knowing  how it sits in the 
surrounding space.  Remarkably,  how-  
ever, the produc t  K1 �9 K2 = K turns out  
to be an intrinsic invariant, as Gauss 
was able  to p rove  in his Theorema 
Egregium: 

If two surfaces are isometric, then 
they have the same Gaussian curva- 
ture at cor responding points. 

There seemed  to be no reason to re- 
gard these purely mathematical ideas as 
a threat to Euclidean geometry so long 
as space itself was taken to be fiat. 
Gauss, however,  thought differently 
about  this matter. Publicly he said noth- 
ing, but privately he made several allu- 
sions to the possibility that the parallel 
postulate might actually fail to hold in 
physical space. In a letter from 1830 to 

the astronomer Wilhelm Bessel, Gauss 
wrote: "We must admit with humility 
that, while number  is purely a product  
of our minds, space has a reality out- 
side our minds, so that we cannot  com- 
pletely prescribe its propert ies  a priori." 
Eight years later, Bessel successfully 
measured stellar parallax under  the as- 
sumption that light travelled along Eu- 
clidean geodesics.  But what  if it did not? 

On the surface of  a sphere,  the sum 
of  the angles in a geodesic  triangle ex- 
ceeds 180 ~ , but Gauss recognized there 
was a second distinct possibility. In a 
letter from November  1824 he wrote: 

There is no doub t  that it can be  rig- 
orously es tabl ished that the sum of  
the angles of a recti l inear triangle 
cannot  exceed  180 ~ . But it is other-  
wise with the statement that the sum 
of  the angles cannot  be less than 
180~ this is the real Gordian  knot,  
the rocks which cause the wreck  of  
all . . . .  I have been  occup ied  with 
the p rob lem over thirty years and  I 
doubt  if anyone  has given it more  
serious attention, though I have 
never publ i shed  anything concern- 
ing it [Gauss 1900, 187]. 
Gauss clearly ruled out  spherical  

geometry,  p resumably  because  its geo- 
desics have finite length, contradict ing 
Euclid's second postulate  that a straight 
line can always be extended.  But 
though he dismissed the possibi l i ty  of 
triangles with an angle sum exceed ing  
180 ~ he went  on to note h o w  

The assumpt ion that the sum of  the 
three angles of a triangle is less than 
180 ~ leads to a special  geometry,  
quite different from ours [i.e. Eu- 
cl idean geometry], which is ab- 
solutely consistent and which I have 
deve loped  to my entire satisfaction, 
so that I can solve every p rob lem in 
it with the except ion  of  the deter-  
mination of a constant,  which  can- 
not  be fixed apriori. The larger one  
assumes this constant,  the closer one  
approaches  Euclidean geometry  and 
an infinitely large value makes  the 
two coincide. If non-Eucl idean 
geometry  were  the true one,  and  
that constant  in some relat ion to 
such magni tudes  as are in the do-  
main of our  measurements  here  on 
earth or in the heavens,  then it could  
be found  out  a posteriori. [Dun- 
nington 2004, 181-182]. 
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Soon after Gauss's death in 1855, his 
friend Sartorius von Waltershausen 
wrote that he had actually attempted to 
test the hypothesis that space might be 
curved by measuring the angles in a 
large triangle that he used in his sur- 
vey of Hanover. The triangle had ver- 
tices located on the mountain peaks of 
Hohenhagen, Inselberg, and Brocken, 
which served as a reference system for 
the system of smaller triangles. Several 
writers have argued that this famous 
story is just a myth, but even if true, 
Gauss apparently concluded that the 
deviation of the sum of the angle mea- 
surements from 180 ~ was smaller than 
the margin of error. So this test would 
have merely confirmed that the geom- 
etry of space is either fiat or else its 
curvature was too small to be detected. 

Slow Acceptance of Non- 
Euclidean Geometry 
If one is tempted to speak of revolu- 
tions in the history of mathematics (a 
debatable point), then one might well 
regard the advent of non-Euclidean 
geometry in the nineteenth century as 
a striking example [Bonola, Rosenfeld]. 
Mathematicians tinkered for centuries 
trying to find a completely elementary 
proof that Euclid's fifth postulate was 
true. Most, including the eighteenth- 
century Jesuit Giovanni Girolamo Sac- 
cheri, were convinced that it was not a 
postulate at all, but rather a theorem. 
By the 1820s and 1830s, the Russian 
mathematician Nicholas Lobachevsky 
and a young Hungarian named Janos 
Bolyai showed that one could develop 
an exotic system of geometry in which 
the fifth postulate was false and, instead 
of having only one line in the plane that 
passes through a given point without 
meeting a given line, there will be in- 
finitely many. 

It would take over three decades be- 
fore the publications of Lobachevsky 
and Bolyai gained belated recognition; 
not before the 1860s did mathemati- 
cians begin to take the new theory se- 
riously. A major obstacle for this new 
non-Euclidean geometry was the lack 
of a "real-world model" in Euclidean 3- 
space comparable to the sphere. The 
eighteenth-century Alsatian mathemati- 
cian J. L. Lambert had found an analytic 
model by studying the properties of a 
sphere with imaginary radius, but nei- 

ther he nor any of his contemporaries 
seem to have regarded this as any more 
than a curiosity. Not until 1866 when 
Eugenio Beltrami obtained a surface of 
constant negative curvature by revolv- 
ing a tractrix curve about its axis, did it 
become possible to visualize such a 
non-Euclidean geometry. 

This lack of Anschaulichkeit had 
something to do with the slow reception 
of the work of Lobachevsky and Bolyai, 
but the delay was also due to a lack of 
intellectual courage on the part of the 
leading mathematical minds of Europe. 
Surely the history of non-Euclidean 
geometry would have unfolded quite dif- 
ferently had Gauss made public his 
views on the theory of parallels. 

In December 1853, Bernhard Rie- 
mann submitted his post-doctoral the- 
sis to the G6ttingen philosophical fac- 
ulty along with three proposed topics 
for the final lecture required of all new 
members. The elderly Gauss presided 
on this occasion and requested that Rie- 
mann speak about the third topic on 
the list: "On the Hypotheses that Lie at 
the Foundations of Geometry." Rie- 
mann was undoubtedly surprised by 
that decision and none too pleased 
about it. He complained to his brother 
that this was the only topic he had not 
properly prepared at the time he sub- 
mitted his thesis. The lecture took place 
the following June, and according to 
Richard Dedekind it made a deep im- 
pression on Gauss, as it "surpassed all 
his expectations. In the greatest aston- 
ishment, on the way back from the fac- 
ulty meeting he spoke to Wilhelm 
Weber about the depth of the ideas pre- 
sented by Riemann, expressing the 
greatest appreciation and an excite- 
ment rare for him" [Riemann 1892, 517] 

This was the famous lecture in which 
Riemann explained how the notion of 
Gaussian curvature could be extended 
beyond surfaces to manifolds with an 
arbitrary number of dimensions. In par- 
ticular, this meant that one could study 
the intrinsic geometry of three-dimen- 
sional spaces. Riemann began with this 
assessment of how little progress had 
been made in clarifying the foundations 
of geometrical research: 

It is well known that geometry pre- 
supposes not only the concept of 
space but also the first fundamental 
notions for constructions in space as 

given in advance. It only gives nom- 
inal definitions for them, while the 
essential means of determining them 
appear in the form of axioms. The 
relationship of these presumptions is 
left in the dark; one sees neither 
whether nor how far their connec- 
tion is necessary or a priori even 
possible. From Euclid to Legendre, 
to name the most renowned of 
modern writers on geometry, this 
darkness has been lifted neither by 
the mathematicians nor the philoso- 
phers who have labored upon it 
[Riemann 1854, 133]. 
Riemann's approach abandoned re- 

liance on a theory of parallels, turn- 
ing instead to a theory of distance 
based on a generalization of the 
Pythagorean Theorem. On a human 
scale, he noted that the metric prop- 
erties of space accorded well with Eu- 
clidean geometry. However, "the em- 
pirical concepts on which the metric 
determinations of space are based--  
the concepts of a rigid body and a 
light ray--lose their validity in the in- 
finitely small; it is therefore quite 
likely that the metric relations of space 
in the infinitely small do not agree 
with the assumptions of geometry, 
and in fact one would have to accept 
this as soon as the phenomena can 
thereby be explained in a simpler 
way" [Riemann 1854, 149]. 

As for geometry in the large, Riemann 
emphasized that our intuition makes it 
hard to conceive of physical space as 
bounded, whereas a space of infinite ex- 
tent poses real difficulties for cosmology. 
This suggested the possibility that our 
cosmos might have the structure of a 3- 
dimensional manifold of constant posi- 
tive curvature. Riemann said all this and 
much more in 1854, but he took these 
thoughts with him to the grave. Neither 
Gauss nor anyone else urged him to 
publish his manuscript or pursue their 
consequences further. 

Nearly unapproachable during his 
lifetime, Gauss passed from the scene 
without so much as once publicly ad- 
dressing the dogma that the geometry of 
space had to be Euclidean. After Rie- 
mann's death in 1866, Dedekind was ap- 
pointed editor of his Collected Works, 
and it was he who stumbled upon the 
manuscript on the foundations of geom- 
etry among his deceased friend's papers. 
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Its publication in 1867 sparked immedi- 
ate interest not only in Germany, but in 
Italy and Great Britain as well. Still, it 
would take several more years before 
non-Euclidean geometry found wide- 
spread acceptance among mathemati- 
cians, many of whom remained con- 
vinced that Euclid still reigned supreme. 
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R O C K Y  M O U N T A I N  M A T H E M A T I C A  

Join us this summer for a Mathematica workshop in the scenic and cool mountain environment of 
Frisco, Colorado, 9100 feet above sea level. From July 9-14,  2006, Ed Packel (Lake Forest College) 
and Start Wagon (Macalester College), both accredited Wolfram Research instructors with much 
experience, teach an introductory course (for those with little or no Mathematica background) and an 
intermediate course on the use of Mathematica. Anyone who uses mathematics in teaching, research, 
or industry can benefit from these courses. 

The introductory course will cover topics that include getting comfortable with the front end, 2 -  and 
3-dimensional graphics, symbolic and numerical computing, and the basics of Mathematica 
programming. Pedagogical issues relating to calculus and other undergraduate courses are discussed. 

The intermediate course covers programming, graphics, symbolics, the front end, and the solution 
of numerical problems related to integration, equation-solving, differential equations, and 
linear algebra. 

Comments from participant Paul Grant, Univ. of California at Davis: 
The instructors had boundless enthusiasm for and an encyclopedic knowledge of Mathematiea. I was 
able to complete an animation project that I will be showing to my students. I highly recommend these courses 
to anyone wanting to learn Mathematica from the ground up or enhance their knowledge of the program. 

For more info, contact packel @lakeforest.edu or wagon@macalester.edu, or visit rmm.lfc.edu. 
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