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ABSTRACT | This paper explores the constructive and 

foundational methods of spherical geometry as introduced 

in Menelaos’ Spherics and their relation to similar techniques 

in Theodosios’ Spherics. In particular, it argues that, although 

Menelaos had the key insight to develop spherical analogs and 

divergences in relation to Euclid’s propositions treating the 

plane triangle, and took the step of producing the first geometry 

of figures drawn on the surface of a sphere, the foundational 

mathematical methods as well as the lexical stylistic tropes that 

Menelaos used were available to him from a close reading of 

Theodosios’ Spherics.

KEYWORDS | Theodosios, Menelaos, Spherics, spherical 

geometry, geometrical constructions, mathematical foundations
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1. Introduction

!is paper explores the foundations of Menelaos’ spherical geometry by com-
paring his constructions and foundational theorems with related constructions 
and theorems in the Spherics of !eodosios. As is well known, Menelaos pro-
duced an intrinsic geometry of the properties of #gures drawn on the surface 
of a sphere, and many of his propositions can be compared directly to plane 
propositions of Euclid’s Elements I and VI. In the following, I will detail how, 
although Menelaos developed the new conception of an intrinsic geometry of 
the sphere and developed this to a considerable degree, the foundational meth-
ods that he used, and the basic analogies that he employed, were adumbrated 
in the work of his predecessor !eodosios. !at is, although Menelaos took the 
crucial step of developing analogies for the propositions of Euclid’s theories of 
plane triangles and sought to do this work as much as possible directly on the 
surface of the sphere, the underlying constructive methods and congruence 
relations, and even many of the linguistic tropes that he used, would have been 
available to him though a careful reading of !eodosios’ Spherics.

!ere are various di%erent approaches to studying the geometry of the 
sphere preserved in the Greco-Roman mathematical sources. We can group 
these broadly into a number of di%erent categories. !ere are some investiga-
tions of the solid properties of the sphere in those texts that explore the con-
structions and properties of regular #gures in the sphere, such as Elements XIII 
and XIV, by Euclid and Hypsikles respectively. !ere are works that treat the 
mensuration of various elements of the sphere, such as treatises by Archime-
des and Heron. !ere is the group of texts such as Autolykos’ Moving Sphere 
and Risings and Se!ings, Euclid’s Phenomena, and the surviving works of !e-
odosios, which apply solid geometry to studying the properties of great and 
small, particularly parallel, circles in the sphere, and then apply these to topics 
in spherical astronomy. !ere are the analemma methods, as exempli#ed in 
Ptolemy’s Analemma, which involve con#gurations that arise from orthogo-
nal rotations and projections of circles on a sphere into a certain plane. Such 
constructions allow for nomographic and plane chord-table trigonometric 
computations. !ere are methods that involve constructions that could be pro-
duced by stereographic projection of objects on the surface of the sphere into 
a plane, as exempli#ed in Ptolemy’s Planisphere. Such constructions also admit 
nomographic and plane trigonometric computations. Finally, there are stud-
ies of the intrinsic properties of #gures produced on the surface of the sphere, 
which can also be developed into a trigonometry of spherical #gures involving 
either spherical quadrilaterals or triangles, as found in Menelaos’ Spherics and 
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Ptolemy’s Almagest. In this paper, I will restrict my a"ention to certain aspects 
of the development of Menelaos’ intrinsic geometry of #gures drawn on the 
surface of a sphere, especially as related to the constructive methods of !e-
odosios’ Spherics. I will refer to this particular intrinsic approach as spherical 
geometry, and to all of the various mathematical methods found in the ancient 
sources as geometries of the sphere.

!ere was no special terminology among Greek authors for referring spe-
ci#cally to either intrinsic spherical geometry, or the various geometries of the 
sphere on the whole. !e word spherics, which is commonly used by modern 
authors, may be taken to derive from (1) the title of either of the works by 
!eodosios and Menelaos, τὰ σφαιρικά, meaning spherical things or ma"ers, 
or (2) the term for an ancient #eld of the mathematical sciences, ἡ σφαιρική, 
which was used by later authors with Pythagorean or Platonist leanings.1 In the 
works of !eodosios and Menelaos, however, we #nd that although the con-
structive methods are the same, the overall concept is di%erent, because !e-
odosios does not a"empt to systematically develop an intrinsic geometry of 
#gures on the surface of the sphere, whereas this was clearly Menelaos’ primary 
goal. What joins these two treatises together in a single project is that they are 
based on the same foundational mathematical methods, and they both cul-
minate in theorems of signi#cance for spherical astronomy, a discipline that 
would have been of cosmological relevance at the time. Moreover, when later 
authors, such as Nikomachos or Proklos, refer to a discipline of spherics, this 
is, in fact, a rhetorical expression for the #eld of astronomy as a whole.2 Hence, 
the two Greek terms that we could directly understand as spherics can be taken 
to mean neither an intrinsic spherical geometry, nor all of the mathematical 
methods for studying the sphere. !us, although we will use this terminology 
for our own convenience, we must acknowledge that it does not delineate an 
ancient conception that was articulated in our sources.

It used to be held that !eodosios’ Spherics was more or less entirely the 
work of some earlier author,3 and, indeed, many inferences in the Moving 

1 Although the term spherics used to be a"ributed to the older Pythagoreans (for example, 
Heath, A History, 1921, p. 243; Bulmer-Thomas, “!eodosius of Bithynia”, 1970, vol. 
13, p. 319, col. 2), more recently scholars working on the Pythagorean sources have inde-
pendently recognized the quotes a"ributed to Pythagoras that contain this word as later 
forgeries, and the a"ribution of this term to Archytas by Nikomachos is now understood to 
be an insertion into the text by Nikomachos himself (see Huffman, Archytas of Terentum, 
2005, p. 103).

2 See Hoche, Nicomachi Geraseni, 1866, p. 6; Friedlein, Procli Diadochi, 1873, p. 37, 59.
3 See, for example, Heiberg, Li!erargeschichtliche Studien, 1882, p. 44-52; Hultsch, “Autol-

ykos und Euklid”, 1886; Bjørnbo, Studien über Menelaos’ Sphärik, 1902, p. 63.
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Sphere of Autolykos and the Phenomena of Euclid read almost word-for-word 
as applications of propositions demonstrated in the Spherics.4 More recently, 
however, scepticism has grown that we are now in a position to be certain about 
the details of work on the geometry of the sphere prior to the time of Autol-
ykos and Euclid.5 Furthermore, there are serious diDculties involved with the 
assumption that Phenomena 7 relies directly on !.Sph. III.22, or that Phenom-
ena 8, 12, and 13 rely on !.Sph. III.5-III.8, as was made in the 19th and early 
20th centuries.6 Hence, while it is agreed by all that there must have been some 
deductive work on the geometry of the sphere prior to the time of Autolykos 
and Euclid, on which they could draw, we should admit that the contents of 
this work is now unknown to us in detail, and even in overall structure. Further-
more, it is likely that some of the verbal agreement that we now #nd between 
the treatises of Autolykos, Euclid, and !eodosios was introduced later when 
these works were grouped together and studied as a codicological and didac-
tical unit, starting from the Roman Imperial period and continuing through 
the late ancient period up until the 9th century, when our earliest manuscripts 
were composed.7 Whatever the case, such considerations need not concern us 
for the topic of this chapter, because we are here interested in the relationship 
between the two Spherics of !eodosios and of Menelaos. What is clear is that 
Menelaos read the former text and a"ributed it to !eodosios,8 and, as I will 
argue below, he expected his readers to have mastered this text before they 
read his own. Hence, from the perspective of Menelaos, the only work on the 
geometry of the sphere that he acknowledged as being a signi#cant precedent 
to his own was the Spherics a"ributed to !eodosios.

4 Aujac, “Le langage formulaire”, 1984.
5 Schmidt, On the Relation, 1943, p. 11-12; Neugebauer, A History, 1975, p. 750; Berg-

gren, “!e relation”, 1991, p. 241.
6 See the next section for a discussion of the abbreviations that I use for the texts of Euclid’s 

Elements, !eodosios’ Spherics, and Menelaos’ Spherics.
7 Acerbi, “Types, function, and organization”, p. 141-151.
8 Krause, Die Sphärik von Menelaos, 1936, p. 239 n. 1; Sidoli, Kusuba, “Al-Harawī’s ver-

sion”, 2014, p. 167, 172; Rashed, Papadopoulos, Menelaus’ Spherics, 2017, p. 697, 769.
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1.1. Notations, diagrams, abbreviations, sources

I will use two di%erent notations for denoting mathematical objects. For 
referring closely to the ancient and medieval texts, I will use le"er-names 
drawn from the text, in which speci#c points, or unspeci#ed parts of the let-
ter-names, are denoting using italics. I will use bold le"ers to denote geometric 
objects that are named by le"er, such as C(ABC) for circle ABC, gC(ABC) for 
great circle ABC, T(ABC) for triangle ABC, sphT(ABC) for spherical triangle 
ABC, and so on. When summarizing the mathematical concepts, I will also use 
italic le"ers to denote geometric objects, such as C for any circle, gC for a great 
circle, sC for a small circle, pC for a parallel circle, and so on. In this situation, it 
is sometimes useful to di%erentiate between an object in the sphere and others 
on the Euclidean plane, such as sCS for a small circle in the sphere, and lE for a 
line in the plane.

For a number of the propositions discussed below, I give reconstructed dia-
grams drawn using principles of linear perspective to display the objects under 
investigation. !ese diagrams are o$en strikingly di%erent from the diagrams 
in our medieval evidence for the texts under discussion. For the purposes of 
this paper nothing depends on the diagrams themselves; hence, I believe that 
there is no danger of conceptual misunderstanding by taking this approach. 
Furthermore, because I believe that the ancient mathematicians expected their 
texts to be read in conjunction with the use of a solid or armillary sphere, on 
which the diagrams could actually be drawn, the use of perspective diagrams 
allows us, in wri"en communication, to discuss something which was proba-
bly closer to what the ancient authors expected their readers to see.9 Finally, 
the most important exemplars of the texts that I will read are now available in 
color images online – Vat.gr. 204, at the Biblioteca Apostolica Vaticana, and 

9 !ere are a number of indications from literary and art-historical sources that teachers of 
the mathematical sciences o$en used solid spheres for instruction. For example, Strabon 
states that anyone who has seen a globe, and understood the things taught in “the #rst 
course of the mathematical sciences” will be able to understand his Geography (Strabon, 
Geography, I.1.21 [C13]). !ere are many images of philosophers, or goddesses, holding 
a pointer and a globe or armillary sphere, as a representation of a teacher. Such as one of 
the #gures in a tomb from around 300 BCE at Pella, Central Macedonia, Greece, now in 
the Ephorate of Antiquities of Pella, or the central #gure in the famous mosaic from the 
Villa of Titus Siminius Stephanus, Pompei, 1st c. BCE-1st c. CE, now in the Museo Arche-
ologico Nazionale, Naples, inv. 124545. In the 5th-century allegorical #ction of Martianus 
Capella, the Marriage of Philology and Mercury, the lady Geometry appears with a rod and 
a globe, which is a miniature cosmos (Martianus Capella, Marriage of Philology and 
Mercury, 575-585). Hence, over many centuries, we see the trope of a master of the mathe-
matical sciences depicted with a rod and a sphere.
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Leiden or. 930, at the Universiteitsbibliotheek Leiden – hence, readers who are 
interested in the medieval diagrams can consult them directly.

I o$en refer to propositions of certain standard texts of Greek mathemati-
cal works by book and proposition number, sometimes without giving a sum-
mary of the proposition in question – particularly in the case of propositions 
of Euclid’s Elements. My expectation is that readers who expect to follow the 
details of the mathematical methods of Greco-Roman authors will be willing 
to consult these works, or their translations, directly. For example, Elem. I.
post.1 refers to the #rst postulate of the Elements, found in the #rst book; and 
!.Sph. I.1 refers to the #rst proposition of the Spherics of !eodosios, while 
M.Sph. III.1 refers to the #rst proposition of the third part of Menelaos’ Spher-
ics.10

In this paper I use the most recent edition of the Greek text by Claire 
Czinczenheim as a base text for reading !eodosios’ Spherics.11 !e manu-
script evidence for Menelaos’ Spherics is rather involved.12 !e Greek text of 
this treatise has only been preserved in fragments.13 While the Latin text of 
Gerard of Cremon has been studied but not published,14 two di%erent Arabic 
versions have been critically edited, each of which is explicitly referred to as a 
correction, or restitution (iṣlāḥ), in the medieval scholarship: (1) the 10th-cen-
tury Arabic edition of al-Harawī, made on the basis of a partial correction by 

10 For Menelaos’ Spherics, I use the proposition numbering in the version of Abū Naṣr ibn 
‘Irāq; see Krause, Die Sphärik von Menelaos, 1936. For a discussion of the evidential basis 
for the Menelaos’ text, and my reasons for using Ibn ‘Irāq’s numbering system, see note 51, 
below.

11 Currently, the most accessible translation of the Greek text of this treatise into a modern 
language is the French translation of Ver Eecke, Les Sphériques, 1927, which was based on 
the edition of Nizze, "eodosii Tripolitae, 1852, and checked against a preprint manuscript 
of Heiberg’s 1927 critical edition of the text (see Ver Eecke, Les Sphériques, 1927, p. lii). 
!ere is also a German translation by Nizze, "eodosius Von Tripolis, 1826, and an English 
translation by Stone, Clavius’s Commentary, 1721, of the Latin version of Clavius, "e-
odosii Tripolitae Sphaericorum, 1586, which was itself based on the Arabo-Latin tradition 
of the text. Czinczenheim, Sphériques de "éodose, 2000, corrects a number of errors 
introduced by Heiberg’s reliance on a 14th-century Byzantine recension of the treatise, and 
provides a French translation.

12 An overview of the medieval transmission of Menelaos’ Spherics is given in Sidoli, “Review 
of Menelaus’ Spherics”, 2020, p. 16-20. !e brief remarks here follow the explanation pre-
sented there.

13 Bjørnbo, Studien über Menelaos’ Sphärik, 1902, p. 22-25; Acerbi, “Traces of Menelaus’ 
Sphaerica”, 2015.

14 Bjørnbo, ibid.
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al-Māhānī in the 9th-century,15 and (2) the late-10th or early-11th-century Ara-
bic recension of Abū Naṣr Manṣūr ibn ‘Irāq, based on a di%erent translation, 
probably that of Isḥāq ibn Hunayn.16 Although al-Harawī’s edition is earlier, 
there are a number of concerns about using it as a base text for our under-
standing of Menelaos’ treatise. In the #rst place, it was based on a poor transla-
tion, and then only partially edited by al-Māhānī, who wisely stopped working 
on the text when serious mathematical diDculties were found in his source. 
Al-Harawī a"empted to carry this further, but he made mathematical errors 
in this process,17 and introduced a number of linguistic ambiguities, so that 
it is not clear how well he understood the source material. Ibn ‘Irāq’s text, on 
the other hand, was based on a be"er translation and is mathematically sound, 
but it still contains a number of di%erences with the known Greek fragments 
that may be the result of his own revisions or improvements.18 Nevertheless, 
while still awaiting critical editions of the Latin and Hebrew versions of the 
text before we can fully assess the medieval transmission, for the time being, 
I prefer to use Ibn ‘Irāq’s revision over that of al-Harawī, because of the clear 
problems in the source material for the la"er. In the passages discussed in this 
paper, where the two texts diverge, I will mention the evidence of al-Harawī’s 
version as well.

2.  Theodosios’ Adumbrations of Spherical 
Geometry

!eodosios’ Spherics uses the plane and solid geometry of Euclid’s Elements to 
develop a geometry of the sphere, which is then used to address topics that, 
while stated in ostensibly geometric terms, were almost certainly motivated by 
considerations of the ancient celestial sphere, probably as modeled on a solid 
or armillary sphere. !e treatise is divided into three books:

15 Rashed, Papadopoulos, Menelaus’ Spherics, 2017.
16 Krause, Die Sphärik von Menelaos, 1936.
17 Sidoli, Kusuba, “Al-Harawī’s version”, 2014, p. 178-179, 185-190; Rashed, Papadopou-

los, Menelaus’ Spherics, 2017, p. 277-278.
18 See the example discussed by Acerbi, “Traces of Menelaus’ Sphaerica”, 2015, p. 96-97.
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– !eodosios’ Spherics I introduces the properties of small and great circles 
in the sphere, treats various relationships between them, and develops some 
problems19 that are used in the rest of the treatise.

– !eodosios’ Spherics II begins with theories of tangency and parallelism 
relating to small and great circles on the sphere, and then uses these to study a 
con#guration involving a bundle of parallel circles and a set of great circles that 
either pass through the poles of the parallel circles or are tangent to a pair of 
equal parallels, as well as a bundle of parallel circles cut by a single oblique great 
circle. !ese geometric con#gurations can be understood to represent the rela-
tionship between the local horizon at di%erent times of the day and a bundle of 
small circles parallel to the celestial equator as well as the instantaneous posi-
tions of the ecliptic relative to the local horizon. Along the way, !eodosios 
includes two #nal problems, which show how to produce great circles tangent 
to a given small circle.

– !eodosios’ Spherics III starts with some geometric lemmas and then uses 
the same two-part con#guration treated in the previous book to develop a 
number of theorems that treat various relations concerning arcs of another 
inclined great circle and arcs cut o% by the bundle of parallel circles or the great 
circles either passing through their poles or parallel to a pair of equal parallels. 
!ese propositions can be interpreted as making claims about the rising times 
of arcs of the ecliptic over the horizon. !ere are then some theorems that 
lead to a bound on the ratio between arcs of the ecliptic and their rising times, 
which is itself related to the obliquity of the ecliptic.

!e astronomical topics that can be treated by the theorems of !eodosios’ 
Spherics II and III belong to what we call spherical astronomy, and such sub-
jects were also treated in astronomical texts by earlier authors such as Autol-
ykos, Euclid, Hipparchos, and, then later by Menelaos and Ptolemy.

2.1. Analogies between "eodosios’ Spherics and Euclid’s Elements III

Most of the purely geometric propositions of this treatise – that is, much of 
!eodosios’ Spherics I and the opening theorems and problems of his Spherics II 
– have direct analogs among the propositions of Euclid’s Elements III, Euclid’s 
treatment of the circle. !e analogies between the geometric objects in !eo-

19 !roughout this paper, I use problem, in italics, to refer to the type of proposition in a Greek 
mathematical text, enunciated in the in#nitive, in which the mathematician sets out some 
constructive procedure, and then proves that it has been successfully carried out.
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dosios’ Spherics and their analogs in the Euclid’s Elements, however, go through 
a three-stage transition. Initially, the analogy is (1) between the sphere itself 
and some base circle, S D CE, a diameter of the sphere and a diameter of the 
base circle, dS D dE, and a solid small circle in the sphere and a chord in the 
base circle, sCS D CrdE. In the middle of !eodosios Spherics I, the analogy 
shi$s to that (2) between the sphere and a base circle, S D CE, a great circle 
on the surface of the sphere and a diameter of the base circle, gCS D dE, and a 
small circle on the surface of the sphere and a chord in the base circle, sCS D 

CrdE. Finally, in the problems, the analogy becomes (3) between a great circle 
on the surface of the sphere and a line in the plane, gCS D lE, and a small circle 
on the surface of the sphere and circle in the plane, sCS D CE. We recognise this 
#nal analogy as that at the crux of later conceptions of spherical geometry. It is 
not clear, however, that !eodosios himself recognized the importance of this 
analogy, because he did not further develop it in his treatise. Indeed, we should 
recognize that, for !eodosios, this fundamental analogy may have arisen as 
a sort of unintentional result of his need for certain constructive propositions 
and his strategy of modeling his propositions on those in Euclid’s Elements III.

In order to understand how this key analogy was suggested by !eodosios 
and then fully developed by Menelaos, we need to explore the role of con-
structions and constructive problems in each of their Spherics. In this section 
we consider the development of the problems of the !eodosios’ Spherics, and 
conjecture about some possible motivations for the form that these took in 
!eodosios’ treatise.

2.2. "eodosios’ Problems

In all but one of his problems, !eodosios assumes two constructive proce-
dures without discussion or postulation, namely (1) the ability to draw a circle 
around a given point on the surface of the sphere, as pole, with a given distance, 
or span, that may be carried from anywhere in the assumed or constructed con-
#guration, and (2) the ability to cut o% an arc of a given circle on the sphere, 
or a length in a plane, equal to a given distance that may be carried from any-
where in the con#guration.20 Both of these operations are clearly related to 
Euclid’s circle postulate, Elem. I.post.3, but it should be observed that, in prac-
tical terms on a solid sphere, these actions can be carried out with a normal 

20 !ese two constructions are discussed in Sidoli, Saito, “!e role”, 2009, p. 587–588. In 
Sph. I.2, !eodosios also assumes the ability to pass a cu"ing plane through a sphere, but 
this is part of a fully solid construction, like those in Euclid’s books on solid geometry, Ele-
ments IX–XIII, and we will ignore it for the purposes of this paper.

D
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compass – that is, a compass that carries a #xed span, as all real compasses 
do. Although we could denote these two operations separately, as related to 
the di%erent ways that Elem. I.post.3 and I.3 function in the Elements, for our 
purposes in this paper, I will simply refer to both of these operations as Elem. I.
post.3(compass).

At the end of !eodosios’ Spherics I, we encounter a run of four problems 
that show (1) how to set out the diameter of a given circle in a sphere (!.
Sph. I.18), (2) how to set out the diameter of a given sphere (!.Sph.  I.19), 
(3) how to draw a great circle between two given points on the surface of a 
sphere (!.Sph. I.20), and (4) how to #nd the pole of a given circle on the sur-
face of a sphere (!.Sph.  I.21).21 !e most important proposition of this group 
is !.Sph.  I.20 – “Draw a great circle through two given points that are on a 
spherical surface.”22 If we consider this as one of the main goals of this group of 
propositions, we can use an analytical argument following the style of ancient 
geometrical analysis to motivate !.Sph. I.18-I.20 as found in the received text.

It is well known that we can o$en understand the motivation for the con-
structions in an ancient Greek problem by working backwards from the assump-
tion that what we seek has already been produced.23 In this case, we begin with 
the analytical assumption that a great circle, gC1, passes through the two given 
points, say P1 and P2. !en, if we could determine a pole of gC1, at say P3, and 
if we could use Elem. I.post.3(compass) to draw a great circle around P3 as a 
given point, then we could complete !.Sph. I.20 (see Fig. 1 (le$)). But if we 
could use Elem. I.post.3(compass) to draw great circles gC2 and gC3 around P1 
and P2 as poles, then they would meet at P3, by an argument analogous to that 
of Elem. I.1. Hence, the key to completing !.Sph. I.20 comes down to whether 
or not we can draw a great circle around a given point as pole.

 

21 In the medieval manuscripts of the Greek text there are two redundant propositions that 
conclude !eodosios’ Spherics I (for example, Vat.gr. 204, f. 9r-9v), but these are missing in 
!ābit’s Arabic edition, and are clearly spurious interpolations; see Kunitzsch, Lorch, 
"eodosius Spherica, 2010, p. 84.

22 Czinczenheim, Sphériques de "éodose, 2000, p. 77.
23 Knorr W., "e Ancient Tradition, 1986.
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Fig. 1: (le$) Perspective diagram of the primary objects in !.Sph. I.20. For the medi-
eval manuscript #gure, see Vat.gr. 204, f. 8v. (right) !e diameter of the sphere and 
related objects, in the plane.

By !.Sph. I.16 and I.17, we know that the distance between the pole of a 
great circle and its circumference – what we can call its polar radius – is equal 
to the side of a square inscribed in a great circle, gC. Hence, if we could set out 
the diameter of the sphere, we could use the postulates and problems of the 
Elements to drawn a circle around it and inscribe a square (see Fig. 1 (right)). 
Moreover, since the diameter of any small circle in the sphere, sC, will be per-
pendicular to the diameter of the great circle gC through the poles of sC, by 
!.Sph. I.10 and I.6, and since joining the endpoints of both diameters by the 
polar radii of sC will result in congruent right triangles on either side of the 
diameter of gC, if we could set out the diameter of an arbitrary sC, we could 
then work backwards to complete the construction necessary for !.Sph. I.20, 
because we could produce sC using Elem. I.post.3(compass) and, hence, have 
its polar radius determined. Indeed, these two constructions are provided by 
the two foregoing propositions. !.Sph. I.19 shows how to set out the diameter 
of a given sphere, and it crucially relies on !.Sph. I.18, which shows how to set 
out the diameter of a given circle on sphere.24 

All three of these problems are solid constructions and there is, as of yet, 
li"le indication of any analogy between great circles and lines, gCS D lE. One 
hint toward this conception, however, can be found in the treatment of cases 
in !.Sph. I.20 itself. In !.Sph. I.20, the problem of drawing a great circle 
through two given points is addressed in two cases. First, it is simply remarked 

24 Sidoli, Saito, “!e role”, 2009, p. 589–592.
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that if the given points, say P1 and P2, lie on a diameter of the sphere, then it is 
clear that unlimited great circles will be drawn through them. Second, if P1 and 
P2 are not on a diameter of the sphere, great circles, say gC2 and gC3 are drawn 
around them as poles meeting in say P3(Fig. 1 (le$)). !en a great circle, say 
gC1, is drawn around P3, which will be the unique great circle passing through 
P1 and P2.25 If we think of these two cases in terms of the gCS D lE analogy, the 
#rst would correspond to passing a line through one point, whereas the second 
would be related to passing a line through two points. !at is, the #rst case 
does not result in a de#nite object, whereas the second does. In fact, we do #nd 
Greek geometers passing indeterminate lines through points,26 mostly involv-
ing circles, but they do not seem to have seen the need to explicitly postulate 
such a construction. !e second case, on the other hand, results in a unique 
great circle, and this can be understood as analogous to the postulate for join-
ing a straight line in the plane, Elem. I.post.1. Whether or not !eodosios was 
guided by such considerations in developing !.Sph.  I.20 is unclear, but as we 
will see the analogy between great circles and lines, gCS D lE, becomes more 
pronounced when it is contrasted with the analogy between small circles and 
circles in the plane, sCS D CE, as happens in the next proposition.

 

Fig. 2: (le$) Perspective diagram of the objects in !.Sph. I.21. For the medieval man-
uscript #gure, see Vat.gr. 204, f. 9r. (right) !e primary objects of Elem. III.1.

25 It is not explicitly stated that gC1 is unique, but this follows from the facts that great circles 
diametrically bisect one another, !.Sph. I.11, I.12, and all polar radii of every great circle 
in a sphere are equal, !.Sph. I.16, I.17.

26 For some examples, see the constructions in Elem. III.8, IV.3, Euclid’s Data 92, !.Sph. I.7, 
I.8, and so on.
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!e enunciation27 of !.Sph. I.21 reads: “Find the pole of a given circle in 
a sphere.”28 !at is, given some circle on the sphere, CS, it is necessary to #nd 
one of its poles, say P1(see Fig. 2 (le$)). Conceptually and linguistically this 
proposition is an analog to Elem. III.1, which shows how to #nd the center of a 
given circle. In fact, however, it is the second analog to Elem. III.1 in the !eo-
dosios’ Spherics – !.Sph.  I.2 shows how to #nd the center of a sphere,29 using 
the #rst set of analogies of a sphere to a circle and a diameter of the sphere to a 
diameter of the circle, S D CE and dS D dE. Consideration of the construction in 
Elem. III.1, along with the fact that we can now draw a great circle through two 
points, provides the key to the construction in !.Sph. I.21.

In Elem. III.1, the construction proceeds by producing a diameter and then 
bisecting it, using Elem.  I.10. !is is done by taking an arbitrary chord, bisect-
ing that, Elem. I.10, then erecting a perpendicular chord (a diameter) at the 
midpoint of the original chord, Elem. I.11, and bisecting that, Elem. I.10 (see 
Fig. 2 (right)). In Elements III, however, it is not shown that a diameter of a 
circle bisects a chord until Elem. III.3 and III.4; hence, in the earlier Elem. III.1, 
the proof that the center of the circle has actually been found must be indirect. 
Nevertheless, this con#guration provides the key to !.Sph. I.21 – namely, if 
we can draw a great circle that passes through the pole of our given circle, then 
we can bisect it to #nd the pole.

In !.Sph. I.13-I.15 it is shown that a great circle that passes through the pole 
of another circle will be perpendicular to the circle, and will bisect it. Hence, if 
we could bisect the given circle, we could pass a great circle through the points 
of bisection and bisect the arc cut o% on that.30 Moreover, such a construction 
would allow a direct proof that the construction had been carried through. 
Indeed, in !.Sph. I.21, !eodosios proceeds, in the #rst case, by taking an 
arbitrary point on a given small circle C, say P2, then laying o% two arbitrary 
but equal arcs on either side of P2, say Arc(P3P2) = Arc(P2P4), using Elem. 
I.post.3(compass), and next bisecting Arc(P3P5P4) at point P5, perhaps with 

27 !roughout this paper I use italics to refer to the well-known parts of a mathematical 
proposition of Greek geometry: enunciation (πρότασις), exposition (ἔκθεσις), speci#ca-
tion (διορισμός), construction (κατασκεuή), demonstration (ἀπόδειξις), and conclusion 
(συμπέρασμα); see Friedlein, Procli Diadochi, 1873, p. 203; Netz, “Proclus’ division”, 
1999; Acerbi, La sintassi logica, 2011, 1-117.

28 Czinczenheim, Sphériques de "éodose, 2000, p. 78.
29 Sidoli And Saito, “!e role”, 2009, p. 589.
30 Indeed, a more direct analog of the construction in Elem. III.1, as passing an arbitrary great 

circle through the given circle and then bisecting its arc and erecting a perpendicular, would 
require that we be able to construct a great circle perpendicular, or at an arbitrary angle, to 
another. But such a construction is not known to have been established before Menelaos.
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Elem.  III.31 (see Fig. 2 (le$)).31 Finally, a great circle, gC, is passed through 
P2 and P5, !.Sph. I.20, and Arc(P2P5) is bisected at P1, Elem.  III.31.32 From 
this construction, it follows directly and almost immediately that P1 is a pole of 
C, by the properties established in !.Sph. I.13-I.15 and !.Sph. I.def.5, which 
asserts that the polar radii joining a circle with each of its poles are all equal.

!is con#guration, and its analogy with Elem. III.1, allows us to see a bit 
more clearly the #nal set of analogies that are developed in !eodosios’ Spher-
ics – namely, gCS D lE and sCS D CE. !e second case of !.Sph. I.21, however, 
again makes it unclear whether this analogy was actually motivating !eodo-
sios’ approach or was simply a consequence of the pa"erns found in the math-
ematical objects themselves. In particular, !.Sph. I.21 Case 2 shows how to 
#nd the pole of C when C is taken to be a great circle. !e construction involves 
a slight modi#cation in which either Arc(P2P3P5) or Arc(P2P4P5) is bisected 
and then gC is drawn around that bisection point as a pole (not shown in Fig. 
2). Since such a construction involves two great circles intersecting at right 
angles on the sphere, it seems unlikely that !eodosios, or indeed any ancient 
mathematician, would have regarded it as being analogous to a plane con#gu-
ration.33 Indeed, although the #nal set of analogies are suggested by the #nal 
two problems of !eodosios’ Spherics I, it is not until the problems of Spherics II 
that they come into be"er focus. We turn to those problems now.

A$er establishing the concept of parallelism between circles in a sphere in 
!.Sph. II.1-II.2, developing a theory of the tangency of circles in a sphere in 
!.Sph. II.3-II.8, and introducing a bundle of parallels and a set of great cir-
cles that is either perpendicular to, or similarly inclined on, the greatest of the 
parallel circles, !eodosios provides two #nal problems, showing how to draw 
a great circle that is tangent to a given small circle, passing through a given 
point. !e con#gurations of these two propositions are closely related to those 
of Elem. III.16 and III.17.

31 More speci#cally, since !.Sph. I.18 allows one to set out a diameter of a given circle, we 
may set out the diameter of C in the plane as, say dE, about which we draw a circle in the 
plane, CE = C, using Elem. I.10 and I.post.3. Hence, we can use Elem. I.post.3(compass) to 
carry Arc(P3P4) and lay it o% on CE. !is plane arc can be bisected using Elem. III.31. !e 
result of this bisection can then be carried back and laid o% on the circle in the sphere, C, 
using  Elem. I.post.3(compass).

32 As in the previous note.
33 From our perspective we may think of this as analogous to two perpendicular lines, where 

the lines are regarded as circles of in#nite diameter – but such a conception is not known to 
have been articulated in any ancient text.
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Fig. 3: (le$) Perspective diagram of the objects in !.Sph. II.14. For the medieval man-
uscript #gure, see Vat.gr. 204, f. 16r. (right) !e primary objects of Elem. III.16.cor.

!.Sph. II.14 begins, “Given a circle less than great in a sphere and some 
point on its circumference, draw through the [given] point a great circle touch-
ing the given circle.”34 !is means that if we have some given small circle, sC, 
and a given point, P1, on it, then we are to produce a great circle, gC1, pass-
ing through P1 that is tangent to sC (see Fig. 3 (le$)). Since, when two circles 
are tangent a unique great circle will pass through their poles and the point of 
tangency, by !.Sph. II.3-II.5, the construction needed for !.Sph. II.14 can 
be e%ected by #rst drawing the great circle that will pass through these three 
points, or rather any pair of them. !is can be done, fairly straightforwardly, 
by #rst taking the pole of sC, as say P2, !.Sph. I.21,35 and drawing great circle 
gC2 passing through P2 and P1, !.Sph. I.20. !en, if P3 is found by cu"ing 
o% Arc(P1P3) subtending the side of a square inscribed in a great circle, with 
Elem. I.post.3(compass),36 a great circle, gC1, can be drawn around P3 as pole, 
with the same polar radius.

!e simplicity of both the diagram and the text of !.Sph. II.14 makes it 
clear that this proposition follows almost immediately from the concepts that 
!eodosios has developed in Spherics II up to this point. Nevertheless, it is 

34 Czinczenheim, Sphériques de "éodose, 2000, p. 101.
35 Notice that when the pole P2 is taken, it simply appears in the #gure. !at is, none of the 

auxiliary objects that would have been used to construct it, such as a great circle through it, 
are found in the #gure, and since such a great circle is later needed, it must be constructed 
independently in the next step. !is follows the standard practice of Euclid’s problem-con-
structions; see Sidoli, “Uses of construction”, 2018, p. 432-442.

36 !e details of #nding the side of a square inscribed on a great circle are discussed above in 
the treatment of !.Sph. I.20, Section 2.2, paragraph 3.
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worth pointing out that this problem is closely related to Elem. III.16. !is theo-
rem, which is one of the more interesting propositions in the early geometrical 
books of the Elements, demonstrates the various properties of a tangent to a cir-
cle, and in particular shows that it is perpendicular to the diameter through the 
point of tangency. !en, in a corollary, it is remarked that “the [straight line] 
produced at an upright to the diameter of the circle at an extremity touches the 
circle.”37 Although Elem. III.16.cor. is expressed as a statement of fact and does 
not use the idiom usually employed for a problem or construction, it clearly 
has a constructive implication. Indeed, since tangents are o$en constructed 
through a given point on a circle, especially in Euclid’s Elements IV, this corol-
lary was almost certainly introduced to justify such constructions, whether by 
Euclid or a later editor. !e construction implied by Elem. III.16.cor. would be 
to take the center of the given circle, Elem. III.1, join a diameter through the 
center and the given point, Elem. I.post.1, and then erect a perpendicular to it 
at the given point, Elem. I.11 (see Fig. 3 (right)). If we consider such a con#gu-
ration as an analog to !.Sph. II.14, we see that it involves the #nal set of anal-
ogies discussed above – namely, gCS D lE and sCS D CE. Furthermore, in this 
analogy, we see that the spherical construction that is the analog to erecting 
a line perpendicular to a given line, Elem. I.11, is drawing a great circle whose 
pole lies on a given great circle.

!.Sph. II.15 presents the clearest example of a proposition in !eodosios’ 
Spherics that develops an analogy between the properties of objects on the 
surface of the sphere with similarly con#gured objects in the plane.38 Indeed, 
considering the analogy between !.Sph. II.14 and Elem. III.16.cor. and the 
fact that many of the propositions in the Spherics have analogs in Elements 
III, it seems likely that !eodosios intentionally modeled the construction 
in !.Sph. II.15 on that in Elem. III.17. !e enunciation of !.Sph. II.15 is:  
“Given a circle less than great in a sphere and some point on the surface of the 
sphere between it and the [circle] equal and parallel to it, draw through the 
[given] point a great circle touching the given circle.”39 !at is, given a small cir-
cle, sC1, and a point, P1, between sC1 and the other parallel circle that is equal 

37 Heiberg, Stamatis, Euclidis Elementa, 1969-1977, vol. I, p. 119.
38 Bjørnbo, Studien über Menelaos’ Sphärik, 1902, p. 47; Schmidt, On the Relation, 1943, p. 

12-13.
39 Czinczenheim, Sphériques de "éodose, 2000, p. 102.
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to it,40 it is necessary to drawn a great circle, say gC1 (or gC1'), passing through 
P1 and tangent to sC1(see Fig. 4 (le$)).

In order to understand how !eodosios proceeds in !.Sph. II.15, we will 
#rst consider the analogous problem of Elem. III.17, which begins, “From a 
given point produce a straight line touching a given circle.”41 !at is, with a 
given a circle, CE1, and a given point, P1, outside of CE1, it is necessary to #nd a 
line passing through P1 and tangent to CE1 (see Fig. 4 (right)). !e construction 
proceeds as follows: (1) !e center of CE1 is taken as P2, Elem. III.1, and (2) P2 
and P1 are joined, Elem. I.post.1, meeting CE1 at P3. !en, (3) with P2 as center 
and P2P1 as distance, a circle, CE2, is drawn, Elem. I.post.3. (4) A perpendicu-
lar, P3P4, is erected from point P3 on line P2P1, Elem. I.11, meeting CE1 at P4. 
(5) P4P2 is joined, Elem. I.post.1, meeting CE1 at P5. Finally, (6) P1P5 is joined, 
Elem. I.post.1. !at this line is tangent to CE1 is shown by demonstrating that 

 P2P5P1 is right, so that P1P5 is tangent, by Elem. III.16. Although the Euclid’s 
Elements never mentions this possibility, it is clear that another tangent, P1P5', 
could be found by initially erecting P3P4' in the other direction. !e fact that 
only one of these two possible tangents is produced in the Elements follows the 
standard procedures of that text.42

40 !e fact that there are no more than two equal parallel circles in a sphere is assumed in the 
proof of !.Sph. II.7, but it can be shown directly by appealing to !.Sph. II.1, II.2, I.8 and 
I.6.

41 Heiberg, Stamatis, Euclidis Elementa, 1969-1977, vol. I, p. 119.
42 In fact, when a problem, such as Elem. I.11, is applied in the Elements it produces a single 

object, so that applying Elem, I.11 once and then following through with the stated construc-
tion, would give only a single tangent, P1P5, which was probably Euclid’s intention.
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Fig. 4 : (le$) Perspective diagram of the primary objects in !.Sph. II.15. (right) !e 
objects of Elem. III.17, with the other possible solution added in do"ed lines. For the 
medieval manuscript #gures, see Vat.gr. 204, f. 17r, and Vat.gr. 190, f. 57v.

We will now go through the construction in !.Sph. II.15, noting the sim-
ilarities and di%erences between it and that of Elem. III.17.43 !e exposition 
of !.Sph. II.15 states that there is a given small circle, say sC1, and a given 
point, P1, between sC1 and the parallel circle that is equal to it (see Fig. 4 
(le$)). !e construction proceeds as follows. (1) !e pole of sC1 is taken as 
P2, !.Sph. I.21, and then (2) a great circle, gC2, is drawn through P1 and P2, 
!.Sph. I.20, meeting sC1 at P3, and (3) a small circle, sC2, is drawn around 
pole P2, with distance P2P1. Next, (4) Arc(P3P6) is cut o% subtending the side 
of a square inscribed in a great circle, with Elem. I.post.3(compass),44 and a 
great circle, gC3, drawn around P6 as a pole, Elem. I.post.3(compass), passing 
through P3 and meeting sC2 at P4 and P4'.45 (5) Great circles, gC4 and gC4', 

43 !e editions of Heiberg, "eodosius Sphaerica, 1927, and Czinczenheim, Sphériques de 
"éodose, 2000, are rather di%erent for this proposition. Here I use Czinczenheim’s text, 
because Heiberg followed a 14th-century Byzantine recension (Par.gr. 2448). Further-
more, I drop the extra case that is bracketed by Czinczenheim at the end of the proposition 
(p. 105, ll.8-16), agreeing that it is a clear interpolation. !is leaves us with just the case 
explicitly mentioned in the enunciation. !e other cases are simpler than that given in the 
text, so !eodosios himself probably omi"ed them, following a common practice in Greek 
mathematical texts.

44 For the details of this construction, see the discussion above concerning Fig. 1 (right), Sec-
tion 2.2, paragraph 3.

45 It is clear that gC3 must intersect sC2 because P3 is on one side of sC2, while P6 is on the 
other.
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are joined through points P2 and P4 as well as P2 and P4', !.Sph. I.20 (twice). 
Finally, (6) Arc(P5P7) and Arc(P5'P7') are cut o% subtending the side of a great 
square, Elem. I.post.3(compass), and then a somewhat involved argument con-
cerning solid objects shows that if a great circle, gC1, is drawn around P7 as 
pole, it will pass through both P1 and P5, and likewise if a great circle, gC1', is 
drawn around pole P7', it will pass through P1 and P5'. !e demonstration that 
the two great circles gC1 and gC1' complete the problem, follows immediately 
from the construction.

Remembering that drawing a great circle whose pole lies on another great 
circle is analogous to erecting a line perpendicular to another in the plane, as we 
saw in comparing !.Sph. II.14 with Elem. III.16, when we compare steps (1)-
(6) of !.Sph. II.15 with those of Elem. III.17, we see that the numbered oper-
ations correspond, step-by-step, between the two constructions. Furthermore, 
this comparison makes it clear why there are two solutions for !.Sph. II.15 but 
only one for Elem. III.17. Speci#cally, in step (4) of Elem. III.17 a perpendicu-
lar is erected, whereas in step (4) of !.Sph. II.15 a great circle is drawn. Since 
in the syntax of a problem-construction new objects are brought in by relying on 
previously established problems,46 and since in Elem. I.11 and I.12 a perpen-
dicular is produced as a segment, or ray, on one side of a given line, only one 
perpendicular will be produced when Elem. I.11 is applied. On the other hand, 
when a great circle is drawn about a pole passing through a point, the whole 
circle will be introduced. Hence, simply following through the syntax of the 
constructions in each proposition will lead to one solution for Elem. III.17 but 
two solutions for the analogous !.Sph. II.15. Finally, it should be noted that 
although step (4) of the construction of !.Sph. II.15 could be carried through 
by simply applying !.Sph. II.14 to produce gC3 tangent at P3, this would not 
produce the pole P6, since the tangent would simply appear in the #gure.47 But 
since the pole is needed for the demonstration, and hence would have to be 
taken anyway, nothing would be gained by applying !.Sph. II.14 directly.

In working through the details of the constructions of !.Sph. I.20, I.21, 
II.14 and II.15, and in comparing them step-by-step with their analogs, Elem. I.
post.1, III.1, III.16, and III.17, we see a strong relationship between the two 
sets of propositions, and it seems almost certain that !eodosios designed his 
approach by modeling his propositions on those of Euclid’s theory of the circle, 
Elements III. !is resulted in the analogies between a great circle on the surface 
of the sphere and a line in the plane, gCS D lE and, and between a small circle 

46 Sidoli, “Uses of construction”, 2018, p. 418-431.
47 Ibid., p. 432-442.
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on the surface of the sphere and circle in the plane, sCS D CE. Whether or not 
!eodosios explicitly intended to develop these analogies, however, remains 
unclear, and as I will argue in the next section, he does not seem to have con-
sidered the possible implications of these analogies for producing analogs to 
the propositions of Euclid’s theory of plane rectilinear #gures, such as those in 
Elements I and VI.

2.3. Limitations of Spherical Geometry in "eodosios’ Approach

!ere are three theorems in !eodosios’ Spherics that establish what we may call 
congruence relations.48 !.Sph. II.11 and II.12, which are solid con#gurations 
that may occur in a sphere, involve perpendicular circles, one of which may be 
great or small, and are stated in terms of internal straight lines. !.Sph. III.3 is 
described as occurring in a sphere, mathematically involves three great circles, 
but is again stated in terms of internal lines. If we use the analogies developed 
in the problems of !eodosios’ Spherics, we #nd that !.Sph. II.11 and II.12 do 
not have speci#c analogs in the propositions of Euclid’s Elements, although their 
plane analogs can be readily shown using the key propositions of the Elements. 
Nevertheless, it is unlikely that !eodosios used such an approach in moti-
vating !.Sph. II.11 and II.12. From a mathematical perspective, !.Sph. III.3 
is related to Elem. I.4 and to M.Sph. I.4, but conceptually it seems rather far 
removed from either.

 

Fig. 5: Perspective diagram of the primary objects in !.Sph. II.11 and II.12. For the 
medieval manuscript #gures, see Vat.gr. 204, f. 14r–14v.

Since !.Sph. II.11 and II.12 will be used below it may further the discus-
sion to outline them here. !ese propositions show that if two equal segments, 

48 Bjørnbo, Studien über Menelaos’ Sphärik, 1902, p. 32-35; Schmidt, On the Relation, 1943, 
p. 17-18.
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say gC=gC’,49 are perpendicular on two equal circles, C = C', and if Arc(P1P2) = 
Arc(P1'P2') ≠ Arc(P2P4)/2 = Arc(P2'P4')/2,50 are cut o% of gC and gC', then 
(see Fig. 5)

Arc(P2P3)=Arc(P2'P3') <=> P1P3 = P1'P3'.

If these con#gurations are found in a sphere, then the segments will be arcs 
of great circles, and since great-circle arcs may be drawn subtending lines P1P3 
and P1'P4', these theorems establish congruence relations between a pair of 
spherical #gures that have two sides that are great circles and one side that may 
be either a great or a small circle – and this is, in fact, how they are commonly 
used in both Spherics.

Fig. 6: Diagram for a possible plane analog to !.Sph. II.11 and II.12. Not found in our 
sources.

Using the analogies developed in the problems – namely, gCS D lE and sCS 
D CE – it is fairly straightforward to see that the plain analogs of !.Sph. II.11 
and II.12 can be shown using propositions of the Elements, such as Elem. I.4, 
I.8, III.27, III.28 and III.35. !at is, assuming two equal circles, C = C', such 
that P2P4 = P2'P4' (see Fig. 6), it can be shown that where P1P2 = P1'P2', then 

Arc(P2P3) = Arc(P2'P3') <=> P2P3 = P2'P3' <=> P1P3 = P1'P3'.

49 !ese segments are treated as any segments in !.Sph. II.11 and II.12 themselves, but when 
these theorems are applied, they will always be great circles, hence I denote them with gC 
and gC'.

50 !ese theorems explicitly state that Arc(P1P2) = Arc(P1'P2') < Arc(P2 P4)/2 = 
Arc(P2'P4')/2, but since for any assumed Arc(P2P3) and Arc(P2'P3') or P1P3 and P1'P3' the 
same claims hold by symmetry at the other ends of the diameters of C and C', at P2' and P5', 
it is clear that this implies that Arc(P1P2) = Arc(P1'P2') ≠ Arc(P2P4)/2 = Arc(P2'P4')/2. 
(!is point is made by Ver Eecke, Les Sphériques, 1927, p. 45, n.2.) We will see below that 
this is, in fact, how the proposition was understood.
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In the plane, however, these are not particularly useful congruence rela-
tions, and they would be shown using more the general congruence theorems 
Elem. I.4 and I.8. Hence, it is likely that the existence of this plane analog to 
!.Sph. II.11 and II.12 is simply a geometrical fact and does not provide us 
with any historical insight into the motivation for !eodosios’ approach.

It remains to examine !eodosios’ #nal congruence theorem. In order to 
compare !.Sph. III.3 with M.Sph. I.4, which we will later read in detail, the 
proposition can be sketched as follows. !.Sph. III.3 shows that if two great 
circles, say gC1 and gC2, intersect at, say, P1, and if Arc(P1P2) = Arc(P1P3) are 
cut o% of gC1, while Arc(P1P4) = Arc(P1P5) are cut o% of gC2, then the straight 
lines joining the endpoints of the arcs so cut o% are equal, P2P4 = P3P5 (see 
Fig. 7). !e proof, which we do not need to follow here, uses an argument of 
solid geometry.

 

Fig. 7: Perspective diagram of the primary objects in !.Sph. III.3. For the medieval 
manuscript #gure, see Vat.gr. 204, f. 28r.

From this con#guration, it can be seen immediately that if a great circle 
is drawn through P2 and P4 and another through P3 and P5, then the two 
great-circle arcs between those points will be equal, Elem. III.28. Indeed, when 
!.Sph. III.3 is applied in !.Sph. III.13, and when a related proposition had 
been applied in Euclid’s Phenomena 12, the goal is to show that these great-cir-
cle arcs are equal. Nevertheless, when !.Sph. III.3 is applied, the argument 
proceeds by #rst asserting that the lines are equal, and then that the corre-
sponding great-circle arcs are equal. In !.Sph. III.6 and III.8, the only other 
two propositions that use !.Sph. III.3 in the !eodosios’ Spherics, only the 
equality of the lines is necessary for the argument.
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When we consider this con#guration, especially in the light of Menelaos’ 
later conception of a spherical #gure, we can recognize that !.Sph. III.3 is 
mathematically equivalent to a special case of side-angle-side congruence for 
spherical triangles – that is, it is related to Elem. I.4. In !eodosios’ Spherics, 
however, this proposition is only articulated for the special case in which the 
two spherical triangles share vertical angles, and it is only used in propositions 
that geometrically describe the con#guration that obtains for rising times of 
arcs of the ecliptic on the inclined sphere. Hence, it is clear that !eodosios 
regarded !.Sph. III.3, not as an important theorem in a new conception of 
spherical geometry, but rather as a special lemma useful to his project of estab-
lishing the geometry of spherical astronomy. As we will see in the next section, 
this orientation changed with the work of Menelaos.

3. Spherical Geometry in Menelaos’ Spherics

Menelaos’ Spherics introduces the concept of a spherical #gure, the sides of 
which are composed of great-circle arcs, to develop an intrinsic geometry of 
spherical triangles (literally, trilaterals), which is then applied to geometrical 
con#gurations that can be understood as treating the same astronomical top-
ics that !eodosios handled in !.Spherics III, and then to developing a series 
of propositions that could be useful to spherical trigonometry, especially as 
applied to spherical astronomy. Menelaos mentions !eodosios by name and 
expected his readers to be familiar with the former’s treatise, as can be seen 
from the fact that he relies on a number of problems and theorems that are 
established in that text. Menelaos’ Spherics is divided into the following three 
parts:51

51 Each of the various medieval versions of this treatise enumerate the propositions di%er-
ently. A table of concordance for the proposition numbers in the main Arabic versions is 
given by Sidoli, Kusuba, “Al-Harawī’s version”, 2014, p. 196. !e least likely numbering 
system is that adopted by Rashed, Papadopoulos, Menelaus’ Spherics, 2017, in their 
edition of al-Harawī’s version. !is numbering system is anomalous, because while the 
text itself makes multiple internal references to di%erent books, the propositions are num-
bered continuously – which is not known in any other treatise of the Greek mathematical 
sciences. (For the references to the di%erent books see by Rashed, Papadopoulos, Mene-
laus’ Spherics, 2017, p. 683, 693, 697, 769, 777.) Furthermore, of the four manuscripts that 
witness this version, only two are numbered continuously, and these o$en also contain the 
discontinuous numbers wri"en in the margins. Even if al-Harawī may have numbered his 
edition continuously, which is not certain, there is no possibility that Menelaos himself 
originally numbered the propositions in this way. Although the versions of Ibn ‘Irāq and 
Gerard number the propositions somewhat di%erently, they divide up the books in the 
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– Menelaos’ Spherics I begins by de#ning spherical #gures as contained by the 
arcs of great circles on the sphere, gives a problem for constructing an angle 
equal to a given angle, and then develops a theory of spherical triangles, in par-
ticular establishing conditions of congruence and various relations between 
elements of two triangles or among elements of one triangle.

– Menelaos’ Spherics II begins with some constructive theorems related to the 
possibility of constructing angles under certain circumstances. It then devel-
ops a number of theorems that treat a con#guration in which equal arcs are cut 
o% of the side of a spherical triangle and joined to the base with great circles, 
making equal angles to the base. !is arrangement results in #gures that have 
the same geometry as certain con#gurations treated in !eodosios’ Spherics II, 
and is used to treat some of the same con#gurations dealt with in !eodosios’ 
Spherics III, namely those that can interpreted as pertaining to the rising times 
of arcs of the ecliptic over the local horizon.

– Menelaos’ Spherics III begins with a proposition unlike anything else in 
the treatise, involving straight lines that have actually been constructed and 
named, and establishing a compound ratio between chords that subtend the 
double arcs of a cross-quadrilateral made up of great-circle arcs – the so-called 
Sector (or Menelaos) !eorem.52 !e Sector !eorem is then applied to pro-
duce propositions of spherical trigonometry, many of which have direct appli-
cations to spherical astronomy.53

Menelaos uses the same constructive procedures as are used in the !eodo-
sios’ Spherics and requires a number of propositions used in that text. Almost 
all of the objects studied by Menelaos are produced by great circles drawn on 
the surface of the sphere. !e only exceptions are the Sector !eorem, which 
constructs and names lines, and the #nal theorems of Menelaos’ Spherics II 
and III, which introduce parallel small circles to show properties already estab-
lished by !eodosios but using the new methods of Menelaos.

same overall way. (See Krause, Die Sphärik von Menelaos, 1936; Bjørnbo, Studien über 
Menelaos’ Sphärik, 1902.) I follow that division here, since both of these were based, in 
some way or another, on a be"er translation of the Greek text.

52 Sidoli, “!e sector theorem”, 2006.
53 Nadal, Taha, Pinel, “Le contenu astronomique”, 2004.
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3.1.  Analogies between Menelaos’ Spherics and Euclid’s Elements I, VI

In the initial geometric portion of the his Spherics, Menelaos develops a the-
ory of the spherical triangle that can be directly compared with the theories 
of the triangle established by Euclid in Elements I and VI. Hence, in Menelaos’ 
approach there is a clear and sustained analogy between a great circle on the 
surface of the sphere and a line in the plane, gCS D lE. !is analogy is made clear 
already in the de#nition of a spherical triangle:

Let that [object] contained by three circumferences in a spherical sur-
face, each of which is less than a semicircle of a great circle, be called a 
trilateral #gure.54

In order to develop this analogy, Menelaos produces propositions that are 
direct analogs to propositions treating properties of triangles in the plane, as 
well as propositions that clearly exhibit features of spherical triangles that are 
unlike those of plane triangles. Before we read examples of each of these, how-
ever, we should consider Menelaos’ use of construction.

3.2. Menelaos’ Single Problem

Because Menelaos seeks to develop an intrinsic geometry of the spherical sur-
face, he adopts the constructive methods of !eodosios, applying the prob-
lems developed in !eodosios’ Spherics, Elem. I.post.3(compass), and other 
constructions used by !eodosios. He also introduces one problem of his 
own, M.Sph. I.1, and a number of constructive theorems, M.Sph. II.1-II.3, that 
establish conditions under which M.Sph. I.1 can be applied.

M.Sph. I.1 shows how to draw a great circle standing at a given point on a 
given great circle such that the two great circles contain a given angle between 
one another. Hence, the subject ma"er of the proposition is related to that of 
Elem. I.23; but M.Sph. I.1 is not a direct analog of Elem. I.23. In fact, the con-
struction provided in M.Sph. I.1 is exactly analogous to an alternative con-
struction for Elem. I.23 that Proklos tells us was due to Apollonios. Proklos 
also mentions that Menelaos wrote an alternate version of Elem. I.25,55 so it is 
clear that Menelaos was interested in questions regarding the foundations of 

54 For the Greek text see Acerbi, “Traces of Menelaus’ Sphaerica”, 2015, p. 100. It may be 
worth noting that Elem. I.def.19 and I.def.20 also speci#cally refer to plain triangles as tri-
lateral #gures.

55 Friedlein, Procli Diadochi, 1873, p. 345-346.
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mathematics, as such a topic was understood among Greek mathematicians.56  
Furthermore, Menelaos elsewhere mentions the relationship between some of 
his work and that of Apollonios,57 so we know that Menelaos was familiar with 
Apollonios’ work and likely read the la"er’s reworking of Euclid’s Elements I.

A$er explaining that Apollonios’ version of Elem. I.23 is not to be preferred 
to Euclid’s, because it depends on material that is demonstrated in Elements III, 
Proklos says:

 

Fig. 8: Interpretive diagram of the objects in Apollonios’ version of Elem.  I.23. For the 
medieval manuscript #gure, see Mon.gr. 427, f. 184r.

For, the la"er [Apollonius] – [1] having taken an arbitrary (τυχοῦσαν) 
angle, angle DGE, and a straight line, AB – [2] with a center, G, and 
a distance, GE, draws circumference GE, and [3] in the same way 
(ὡσαύτως) with a center, A, and a distance, AB, [draws circumference] 
BZ. And – [4] having taken ZB equal to GE – [5] he joins AZ. And [6] 
he declares A and G equal angles, as standing on equal circumferences.58

Following this, Proklos correctly points out that Apollonios must assume 
that AB is equal to DG, and then objects that the whole construction necessar-
ily depends on later material. Although Proklos’ account of Apollonios’ proce-
dure is somewhat looser than we generally expect from a Greek mathematical 
text, it should be possible to make sense of Apollonios’ construction. Indeed, 
since I believe that the claim that AB = DG was part of the original argument, 
and that Apollonios had probably carefully thought through the issues involved 
in this construction, I will go through the details of the argument. In fact, if we 
assume that Apollonios intended his construction to work through an applica-
tion of Elem. I.post.3(compass), then we will see that no use of material from 
Elements III is necessary to establish the validity of the construction.

56 For a discussion of two of the ways in which Greek mathematicians approached founda-
tions of mathematics see Acerbi, “Two Approaches”, 2010.

57 Sidoli, Kusuba, “Al-Harawī’s version”, 2014, p. 172-173.
58 For the Greek text see Friedlein, Procli Diadochi, 1873, p. 335-336.
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Apollonios’ construction is as follows. In [1], he begins with Ang(GDE) 
and line AB. !ese would be the given objects of Elem. I.23 (see Fig. 8). !e 
fact that Apollonios states these as “arbitrary” is probably an indication that 
he does not acknowledge a di%erence between the two di%erent ways of being 
given that we #nd in Euclid’s Data.59 If so, his understanding of given accords 
more closely with ours, since there is no logical di%erence between the two 
ways in which objects can initially be taken as given. !at is, at this point, G, E, 
A and B are unspeci#ed parts of the le"er-names of rays DG, DE, and line AB. 
Next, in [2], Apollonios draws a circle, C(GE), about center D, with an arbi-
trary distance, DG, intersecting the rays of the given angle at G and E, Elem. I.
post.3(compass). Now points G and E are speci#ed as the intersections of the 
rays and the circle. In the next step, [3], he draws a circle, C(BZ), around A as 
center with distance AB. !e quali#cation of “in the same way” should proba-
bly be understood to mean with the same distance – that is, AB = DG. !e use 
of this vague expression is likely an indication that Proklos took this construc-
tion from a summary, not from a text by Apollonios himself, an author not gen-
erally known for such imprecision. At any rate, this speci#es A and B as both 
the endpoints of segment AB, and as the center of the circle and its intersec-
tion with line AB. If Apollonios allows the production of C(BZ) with distance 
AB = DG, this means that he understands the operation Elem. I.post.3(com-
pass) to be an abstraction of the possible action of a real compass. At this stage 
of the construction, Z is an unspeci#ed part of the le"er-name of the circle. !e 
next step, [4], involves another application of Elem. I.post.3(compass), cu"ing 
o% BZ = GE. !e text does not say whether we should understand this as the 
distance from Z to B, or as the Arc(BZ). Both pairs are equal, but through 
the use of Elem. I.post.3(compass) we are only in position to assert that the 
distances are equal without adducing further considerations. Hence, this oper-
ation speci#es point Z as the point on the circumference of C(BZ) such that 
the distance from B to Z is equal to that from G to E. Finally, in [5], line AZ is 
joined, Elem. I.post.1, which completes the construction.

Proklos does not give the demonstration but he hints, in [6], that it relies 
on a claim that Arc(BZ) = Arc(GE). If this were the case, it would likely have 
to depend on something like Elem. III.28, which shows that in equal circles, 
equal arcs stand on equal chords, and Elem. III.27, which shows that in equal 
circles angles that stand on equal arcs are equal. !e justi#cations for these 
theorems can be traced back through Elem. III.26 to stand on Elem. III.24, 

59 For a discussion of these two di%erent ways of being given, see Sidoli, “!e concept of 
given”, 2018.
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Elem. I.8 and Elem. I.4, which are the three propositions of Euclid’s Elements 
that are famously proved through superposition. Since we know that Apollo-
nios accepted superposition and used it in his work,60 it is possible that he was 
reworking the foundations of geometry to rely more directly on superposition 
and to be less centered on a theory of triangles. Another possibility is that 
Proklos was wrong about the demonstration, and that it relied instead on a 
claim that the distances GE and BZ are equal, which would follow directly from 
Elem. I.post.3(compass). If this were the case, Apollonios’ argument could 
have depended only on something like Elem. I.8, which asserts side-side-side 
congruence, and could have been shown through superposition, or through 
more purely constructive assumptions.

Whatever may have been the case with the demonstration, we can make a 
few certain claims about the construction. It relies on something like Elem. I.
post.3(compass) to transfer distances and something like Elem. I.post.1 to join 
lines. It uses these principles to build an isosceles version of the triangle used in 
Elem. I.23, which had been produced in Elem. I.22. Moreover, it does not rely 
on previously established problems, but builds everything from constructive 
axioms. In this regard, it is di%erent from the problems of Euclid’s Elements,61 
and establishing this constructive di%erence was probably one of Apollonios’ 
objectives.

As we will see, the procedure employed by Menelaos in M.Sph. I.1 is directly 
analogous to that in Apollonios’ version of Elem. I.23. Ibn ‘Irāq’s version of 
Menelaos’ Spherics I.1 begins as follows:62

Fig. 9: Diagram for M.Sph. I.1. For the medieval manuscript #gure, see Leid.or. 390, 
f. 1b.

60 Acerbi, “Two Approaches”, 2010, p. 166-168.
61 Sidoli, “Uses of construction”, 2018, p. 434-442.
62 It should be noted that al-Harawī’s version of the demonstration for this proposition is 

somewhat di%erent, but the construction is essentially the same.
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We want to show how to erect an angle equal to a known63 angle that 
great circles contain on a known arc of a great circle at a known point 
on it.
For, [1] let the known arc of the great circle be arc AB, and the known 
point point B, and the known angle that the great circles contain angle 
GDE. And, we want to erect an angle equal to angle GDE at point B of 
arc AB.
!en, [2] we make point D a pole and with whatever distance we trace 
arc GE, and [3] we make point B a pole and with the same as that dis-
tance we trace arc AZ.64 And [4] we cut o% from that arc an arc equal to 
arc GE,65 which is AZ. And [5] we trace an arc of a great circle passing 
through points B and Z,66 which is BZ.67

Reading through this construction, we will see that it follows step-by-step, 
[1]-[5], the same procedure as that set out in Apollonios’ method. In order to 
discuss Menelaos’ construction it may be useful to introduce the same termi-
nology and diagramming style used to discuss !eodosios’ Spherics above (see 
Fig. 10).

 

Fig. 10: Perspective diagram of all of the objects mentioned in M.Sph. I.1. Not in our 
sources. Do"ed objects are discussed in the text, but neither constructed, named, nor 
drawn into the diagram.

In the exposition, [1], Menelaos’ sets out two great circles, gC1 and gC2, inter-
secting with a given angle at point D, and some other given great circle gC3, on 
which is set a given point, A. !en, in [2], he draws a small circle, sC1, about 

63 !e term known (ma‘lūm) is a standard Arabic translation of the Greek word for given; see 
Rashed, Bellosta, Apollonius de Perge, 2010, p. 467-469; Sidoli, Isahaya, "ābit ibn 
Qurra’s Restoration, 2018, p. 210.

64 Both by Elem. I.post.3(compass), transferring the span.
65 Again by Elem.  I.post.3(compass), transferring the span.
66 !.Sph. I.20.
67 Krause, Die Sphärik von Menelaos, 1936, p. 3 (Arabic).
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D with any polar radius, say DG, using Elem. I.post.3(compass),68 and [3] he 
draws another circle with the same polar radius, AB = DG, about B as pole, such 
that sC2 = sC1. !e text does not say how this can be done but makes it explicit 
that such an operation is possible. Again, the simplest way to understand this 
is as an operation of a normal compass used to transfer a polar radius, or dis-
tance, Elem. I.post.3(compass). In [4], the text states that we cut o% Arc(BZ) = 
Arc(GE) from sC2. !is can again be done with a normal compass, Elem. I.
post.3(compass). Finally, [5], Z is joined to B by gArc(BZ), !.Sph. I.20.

!e demonstration need not concern us in detail here, but involves an argu-
ment in solid geometry, using !.Sph. I.15, one of the most important solid 
theorems of !eodosios’ Spherics I, propositions from Euclid’s Elements deal-
ing with the circle and solid con#gurations, and Menelaos’ de#nition of a 
spherical angle as determined by the dihedral angle of the planes of the great 
circles that contain it. In fact, the argument is similar to the sorts of argument 
that we encounter in !eodosios’ Spherics II and III, but Menelaos has nei-
ther constructed nor named any of the solid objects. Instead, he describes the 
objects, inviting the reader to imagine them and their properties, which have 
been established in propositions of the Elements and !eodosios’ Spherics. !is 
is a consistent feature of Menelaos’ approach,69 as will be described in more 
detail in the following section. In Section 4, I will argue that this feature of 
Menelaos’ style is also adumbrated in !eodosios’ Spherics.

With the establishment of this problem, which reproduces exactly the opera-
tions of Apollonios’ construction of an angle equal to a given angle, Elem. I.23, 
Menelaos makes it clear that his text will work with the analogy between a 
great circle and a straight line, gCS D lE, and a small circle and a circle, sCS D CE, 
but now applied to producing analogs to the theorems of Elements I, Euclid’s 
#rst theory of the plane triangle. !e de#nitions and opening propositions of 
the Menelaos’ Spherics, along with Menelaos’ assumption that his readers will 
have already mastered the Elements and !eodosios’ Spherics make it certain 
that he meant us to understand his use of this analogy as deliberate. In the fol-
lowing section, we will look at a couple of examples of theorems from Mene-

68 Ibn ‘Irāq’s text assumes that this circle could also be a great circle and gives a demonstra-
tion in two cases; see Krause, ibid., p. 3 (Arabic). Although mathematically this might be 
possible, it is more common for Greek mathematical texts to simply handle the more diD-
cult case. Moreover, there is only one case in Al-Harawī’s and Gerard’s texts; see Rashed, 
Papadopoulos, Menelaus’ Spherics, 2017, p. 507-509; Bjørnbo, Studien über Menelaos’ 
Sphärik, 1902, p. 33. !is #rst case was probably added by Ibn ‘Irāq.

69 !e only exception is the so-called Sector !eorem, M.Sph. III.1.
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laos’ Spherics that are direct analogs to, or divergences from, propositions of 
Euclid’s Elements.

3.3.  Examples of Analogs and Divergences between Meneaos’ 
Spherics and Euclid’s Elements I and VI

It is well known that many of Menelaos’ theorems are analogs to theorems of 
the Euclid’s Elements, or demonstrate properties that do not hold for plane 
triangles, and any number of propositions could be adduced to show these 
relationships.70 Indeed, the #rst ten propositions of Menelaos’ Spherics I are 
each an analog to one or more propositions of Euclid’s Elements I, and then 
M.Sph. I.11 demonstrates a di%erence from the plane situation by showing 
what happens when an exterior angle of a spherical triangle is greater than or 
equal to an opposite interior angle, situations that Elem. I.16 shows do not arise 
for plane triangles. It seems certain that Menelaos is deliberately inviting his 
readers to conceive of these new spherical #gures as sometimes analogous to, 
and sometimes di%erent from, plane rectilinear #gures.

In order to see an example of how Menelaos develops analogs to proposi-
tions from the Elements, and how he di%erentiates his approach from that of 
!eodosios, we will #rst work through M.Sph. I.4. In Ibn ‘Irāq’s version, this 
proposition reads as follows:

 

Fig. 11: (le$) Diagram for M.Sph. I.4. (right, top) Diagram for Elem. I.4. (right, bot-
tom) Diagram for Elem. I.8. For the medieval manuscript #gures, see Leid.or. 390, f. 
3a, and Vat.gr. 190, f. 18v, 21r.

If two sides of a trilateral #gure are equal to two sides of another trilat-
eral #gure, each to its correspondent, and the base is equal to the base, 

70 Bjørnbo, Studien über Menelaos’ Sphärik, 1902, p. 32-45; Heath, A History, 1921, vol. II, 
p. 262-264; Rashed, Papadopoulos, Menelaus’ Spherics, 2017, p. 129-204.
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then the angles of those #gures that the equal sides contain are equal; 
and if the angle is equal to the angle, then the base is equal to the base.
For, let there be two trilateral #gures, which are ABG and DEZ, and let 
side AB be equal to side DE, and side BG equal to side EZ. !en, I say 
that [1] if base AG is equal to DZ, then the angle that is at point B is 
equal to the angle that is at point E; and [2] if the angle that is at point B 
is equal to the angle that is at point E, then base AG is equal to base DZ.
Indeed, [3] we make points B and E poles and we rotate two arcs of 
circles with distance of points A and D.71 So, these two circles are equal 
to one another.72 And, [4] because arc BG is equal to arc EZ and arc 
BH to arc ET, then arc GH must be equal to arc ZT.73 So, [5] two equal 
segments of equal circles were erected upon their74 diameters that ex-
tend from points H and T at right angles,75 which are those from which 
equal arcs GH and TZ have been cut o%, and they are not half of the 
segments, and arcs AG and ZD, which are equal, were produced, then 
arc AH is equal to arc DT.76 So, [7] the angle that is at B is equal to the 
angle that is at E.77

Again, [8] likewise we show that, of the angle that is at B, if it is equal to 
the angle that is at E, then base AG is equal to base DE, because arc AH 
is equal to arc DT.78 And that is what we wanted to show.79 

!e proposition is in two parts. Part 1, stated in [1], is an analog to Elem. 
I.8, side-side-side congruence, and Part 2, stated in [2], is an analog to Elem. 
I.4, side-angle-side congruence. In fact, the demonstration for Part 2 is only 
sketched in Ibn ‘Irāq’s version. In Euclid’s Elements, both of these congruence 
theorems are demonstrated through superposition, but Elem. I.8 also uses an 
indirect argument, relying on the claim that two di%erent triangles cannot be 
constructed on the same side of the same base with two pairs of equal sides, 
Elem. I.7. Since Menelaos does not use indirect arguments, he is free to intro-
duce the analog to Elem. I.8 #rst, thus applying !.Sph. I.11 before !.Sph. I.12. 
His argument is constructive, and direct.

71 Elem.  I.post.3(compass).
72 !ey have equal polar radii.
73 Elem.  I.c.n.3.
74 !is must mean sC(AH) and sC(DT).
75 !.Sph. I.15.
76 !.Sph. II.11.
77 M.Sph. I.def.3.
78 !is is a sketch of an argument that would apply !.Sph. II.12.
79 Krause, Die Sphärik von Menelaos, 1936, p. 5 (Arabic).
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With two spherical triangles sphT(ABG) and sphT(DEZ), such that the 
sides are equal pairwise, gArc(AB) = gArc(DE), gArc(BG) = gArc(EZ), and 
gArc(AG) = gArc(DZ), then if they are equilateral or isosceles, by the de#ni-
tion of a spherical angle, the angles between the equal sides will be equal, so 
Menelaos does not consider these cases, as the more trivial (see Fig. 12). Oth-
erwise, in [3], he can consider one side to be greater than another, and so use 
Elem. I.post.3(compass), to draw circles C and C' about poles B and E passing 
through points A and D, so as to cut o% the lesser arc from the greater – that 
is, gArc(BA) = gArc(BH) = gArc(ED) = gArc(ET). Hence, by subtraction, 
gArc(HG) = gArc(TZ), as stated in [4]. !en, in [5], since the B and E are 
the poles of C and C', this establishes all of the conditions for !.Sph. II.11, 
because gArc(AG) = gArc(DZ) must stand on equal chords, so that Menelaos 
can assert that Arc(AH) = Arc(DT) in C and C'. Now, in [7], since these arcs 
are the same as the dihedral angles at B and E, which are, by de#nition, the 
angles of the spherical triangles, the spherical angles are equal. Finally, in [8], 
the proof of the converse is sketched by pointing out that if, instead of start-
ing with gArc(AG) = gArc(DZ), it is assumed that the spherical angles at B 
and E, and the sides about them are equal, then Arc(AH) = Arc(DT), so that 
the conditions are satis#ed to apply !.Sph. II.12 to show that gArc(AG) = 
gArc(DZ), because the subtended chords are equal.

 

Fig. 12: Perspective diagram of all the objects mentioned in M.Sph. I.4. Not found in 
our sources.

Hence, although Menelaos produced a theorem whose mathematical con-
tent is analogous to that in Elem. I.8 and I.4, he takes a completely di%erent 
approach. He does not use superposition, but rather construction, and directly 
applies two of !eodosios’ congruence theorems, which are essentially propo-
sitions of solid geometry. Moreover, although Menelaos calls on the solid fea-
tures of !.Sph. II.11 and II.12, he neither constructs nor names any objects 
not on the surface of the sphere – in particular, the subtended chords, which 
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are the subject of !eodosios’ congruence theorems. !is is essentially the 
same as his approach in his only problem, M.Sph. I.1. Although the solid geom-
etry plays a crucial role in the argument, there seems to be a deliberate a"empt 
to downplay its signi#cance in the geometric con#guration and its presence in 
the #gure.

!e opening run of propositions in Menelaos’ Spherics I demonstrates anal-
ogies with, and di%erences from, Euclid’s theory of plane triangles, particu-
larly as concerns congruence and comparisons of the elements of triangles. 
!is is, hence, directly analogous to the subject ma"er of Elem. I.1-I.26, prior 
to Euclid’s development of his theory of parallelism. Among these early prop-
ositions of Menelaos’ Spherics I is an important theorem that has implications 
for the concept of similarity – namely, Menelaos’ Spherics  I.18, which demon-
strates angle-angle-angle congruence for spherical triangles. !is implies that 
there will be no similarity, as distinct from congruence, for spherical triangles. 
Indeed, Menelaos explores various properties of spherical triangles that can 
be directly contrasted with properties of plane triangles that are developed 
in the #rst part of Elements VI, which is Euclid’s theory of similarity in plane 
triangles.

In order to see an example of how Menelaos develops propositions that 
are di%erent from those in Euclid’s Elements, we will go through the details of 
M.Sph. I.26, which can be directly compared with Elem. VI.2, and which estab-
lishes a claim that has been used as an axiom for spaces of positive curvature in 
modern geometry.80 Ibn ‘Irāq’s version of M.Sph. I.26 reads as follows:

Fig. 13: (le$) Diagram for M.Sph. I.26. (right) Diagram for Elem. VI.2, with additional 
objects in do"ed lines. For the manuscript #gures see Leid.or. 390, f. 12a, and Vat.
gr. 190, f.  87r.

If any two sides of a trilateral #gure are partitioned into two halves, then 
the arc that is traced in it between the two midpoints is greater than half 
of the base.

80 Busemann, “Spaces with non-positive curvature”, 1948, p. 1; Rashed, Papadopoulos, 
Menelaus’ Spherics, 2017, p. 205.
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For, [1] let there be a trilateral #gure, on it ABG, and let two of its sides 
AB and BG be partitioned into two haves at points D and E. And we 
draw an arc in it between points D and E, which is arc DE. !en, I say 
that arc DE is greater than half of base AG.
Indeed, [2] we extend DE to Z,81 and [3] we make DZ equal to DE,82 
and [4] we join arc AZ in it between A and Z,83 and [5] we extend each 
of arcs AZ and GB.84 And [6] let them meet at point H.85

!en, [7] sides BD and DE are equal to sides AD and DZ, each side to 
its correspondent,86 and those sides contain equal angles,87 so base BE 
is equal to base AZ.88 And, again, [8] it is equal to arc EG, so arc EG is 
equal to arc AZ.89 And [9] angle ABE is equal to angle BAZ,90 so the 
two arcs AH and HB, joined, are equal to a semicircle – as is shown 
in the tenth proposition91 – so, [10] arcs AH and HE, when joined, 
are greater than a semicircle. And [11] we produce arc AE,92 so [12] 
angle AEG is less than angle EAZ – as is shown from the converse to 
the tenth proposition93 – and [13] the two sides ZA and AE are equal 
to the two sides GE and EA, each side to its correspondent, and angle 
ZAE is greater than angle AEG, so base ZE is greater than base AG.94 
So, [14] arc ED is greater than half of AG.95 And that is what we wanted 
to show.96

In order to discuss Menelaos’ procedure, it may be helpful to work through 
the details of the argument. In the exposition, [1], a spherical triangle, 
sphT(ABG), composed of gC1, gC2, and gC3, is assumed in which a great circle 
arc, gC4 is drawn through it bisecting two of the sides at points E and D (see Fig. 

81 !.Sph. I.20.
82 Elem. I.post.3(compass).
83 !.Sph. I.20.
84 !.Sph. I.20 (twice).
85 !ey must meet in both directions by !.Sph. I.6 and I.11 (see below).
86 !at is, BD = AD and DE = DZ.
87 Vertical angles (see below).
88 M.Sph. I.4. Note that this is also justi#able by !.Sph. III.3, as discussed above.
89 Elem. I.c.n.1.
90 Also from M.Sph. I.4.
91 M.Sph. I.10. !e statement of this fact is probably an addition by Ibn ‘Irāq; it is not found 

in al-Harawī’s version; see Rashed, Papadopoulos, Menelaus’ Spherics, 2017, p. 527.
92 !.Sph. I.20.
93 M.Sph. I.10(converse). !e parenthetical statement must again be Ibn ‘Irāq’s remark.
94 M.Sph. I.8.
95 Euclid’s Elements V.15.
96 Krause, Die Sphärik von Menelaos, 1936, p. 20-21 (Arabic).
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14). !e construction proceeds, in [2], by extending gArc(ED) out towards Z, 
which is initially unspeci#ed, using !.Sph. I.20, and then, in [3], cu"ing o% 
gArc(DZ) = gArc(ED) and specifying Z, with Elem. I.post.3(compass), next, 
in [4], joining A and Z with gArc(AZ), using !.Sph. I.20, and, #nally, in [5], 
extending gArc(AZ) and gArc(GB), with !.Sph. I.20, such that they meet 
at H, in the direction of B. !ere is no discussion of the fact that these great 
circles, gC5 and gC1, must meet in both directions, but this fact follows from 
considering the implications of !.Sph. I.6, which shows that great circles are 
concentric with the sphere, and !.Sph. I.11, which proves that all great circles 
bisect each other. Together these two propositions imply that every two great 
circles bisect each other at the common section of their planes, Elem. XI.3. !is 
is a crucial fact about spherical #gures, because in a plane analog to this same 
con#guration, the extension of such a line would be parallel to the far side, AG, 
of the original triangle (see Fig. 13 (right), do"ed lines).

 

Fig. 14: Perspective diagram for M.Sph. I.26. Individual labels of the great-circle arcs 
are not found in our sources, but otherwise the diagram is close to the manuscript 
diagrams.

!e demonstration begins, in [7], by se"ing up the conditions of M.Sph. I.4 
so as to infer that sphT(DBE) ~= sphT(DAZ), so that gArc(BE) = gArc(AZ) 
(see Fig. 13 (le$)). !is step depends on the claim that vertical spherical 
angles are equal, Ang(BDE) = Ang(ZDA). Although this fact is not demon-
strated in the extant Greco-Roman works on the geometry of the sphere, 
something mathematically equivalent to this claim is assumed in Autolykos’ 
Moving Sphere 10 and !.Sph. II.22. It is relatively straightforward to recon-
struct an argument for this using ancient techniques of the geometry of the 
sphere, as was done in a scholium to !eodosios’ Spherics.97 In [8], a substi-

97 Czinczenheim, Sphériques de "éodose, 2000, p. 415 (Scholium 294).
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tution leads to the claim that gArc(GE) = gArc(AZ). In [9], it is claimed that 
since Ang(DBE) = Ang(DAZ), again by the congruence of the spherical tri-
angles, !.Sph. I.4, of which Ang(DBE) is an exterior angle, while Ang(DAZ) 
is an interior angle of sphT(AHB). !is implies that gArc(AH) + gArc(HB) 
is a semicircle, as is shown in M.Sph. I.10 – which proves that (1) if an exterior 
angle of a spherical triangle is equal to an interior angle then the two arcs of 
the spherical triangle that meet the third point will together be equal to a sem-
icircle; (2) if the exterior angle is less, then the two arcs are together greater 
than a semicircle; and (3) if the exterior angle is greater, then the two arcs 
are together less than a semicircle. Hence, in [10], gArc(AH) + gArc(HE) 
is greater than a semicircle, since by construction gArc(HE) > gArc(HB). 
In [11], a constructive step produces gArc(AE), joining those points, with 
!.Sph. I.20, and, in [12], it is asserted that Ang(AEG) < Ang(EAZ). As noted 
by Ibn ‘Irāq, this follows as a converse to M.Sph. I.10 by assuming that this is 
not the case, and noting that it would immediately contradict the second part 
of M.Sph. I.10, as just stated. Hence, in [13], since there are two sides equal to 
two sides, gArc(ZA) = gArc(GE) and gArc(AE) = gArc(AE), and the angles 
contained by them are unequal, Ang(EAZ) > Ang(AEG), the greater base will 
subtend the greater base. !is is established in M.Sph. I.8, which shows that if 
two spherical triangles have two sides equal and the angle contained by them 
unequal, then the greater side will subtend the greater angle – a direct analog to 
the plane theorem Elem. I.24. !is means that gArc(ZE) > gArc(AG). Finally, 
this implies that gArc(ED) = gArc(ZE)/2 > gArc(AG)/2. !is is an obvious 
mathematical fact, but it also follows directly from Elem. V.15, which shows 
that parts have the same ratio as their equimultiples.

By using the analogy gCS D lE, this proposition can be directly compared 
with Elem. VI.2, with which it exhibits a number of conspicuous di%erences. 
Elem. VI.2 proves that a straight line is drawn parallel to a base of a triangle 
if and only if it cuts the sides of the triangle proportionally. !at is, in Fig. 13 
(right), above,

DE || BG <=> BD:DA = GE:AE.

!is proposition, together with Elem. VI.4, which shows that triangles that 
have equal angles are similar, implies that, in the plane situation, if E were 
taken so as to bisect AG, then DE = BG/2, and if DE were extended and cut o% 
such that DE' = DE, analogously to what is done in the course of M.Sph. I.26, 
then BE' || GE. Hence, the claim of M.Sph. I.26 shows a fundamental di%er-
ence from Elem. VI.2 in terms of the absence of similarity, and the proof of 
M.Sph. I.26 reveals a key di%erence from the analogous situation in the plane 
with regard to the absence of parallelism. In this way, M.Sph. I.26 can be inter-
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preted as making claims about the nature of spherical #gures, by showing spe-
ci#cally how they crucially di%er from plane #gures as developed in theorems 
of Euclid’s Elements.

A number of further comments can be made about this proposition. As usual 
for a proposition from such a text, each step of the proof can be justi#ed by 
previously established propositions from the same treatise, or by claims from 
a well-de#ned toolbox,98 which in the case of the Menelaos’ Spherics is made 
up of Euclid’s Elements and !eodosios’ Spherics. In M.Sph. I.26, in contrast 
to M.Sph. I.1 and I.4, all of the objects introduced are formed by great-circle 
arcs, so that they model lines in the plain, with the analogy gCS D lE. Further-
more, the argument itself also takes place entirely within the spherical surface. 
!at is, it does not employ any solid objects, such as were used in the argu-
ments for M.Sph. I.1 and I.4, above. Indeed, when we look at his Spherics as a 
whole, it seems that Menelaos had a preference for such purely intrinsic proofs, 
and a"empted to dispense with solid arguments as soon as possible. Finally, 
as in Apollonios’ revision of Elem. I.23, discussed above, Menelaos does not 
proceed by using previously established problems to introduce new objects, 
but rather depends directly on repeated uses of Elem. I.post.3(compass) and 
!.Sph. I.20, which can be understood both as operations of the compass, from 
a practical perspective, and as analogous to the Euclidean postulates, Elem. I.
post.3 and Elem. I.post.1, from a theoretical perspective. !is seems, again, to 
indicate that Menelaos is following the constructive approach taken by Apol-
lonios, as opposed to that employed by Euclid.

4. Implicit Solid Geometry in both Spherics

In the demonstrations of M.Sph. I.1 and I.4 that were discussed above, we saw 
that Menelaos introduced solid considerations, particularly when applying 
!.Sph. II.11 and II.12, in such a way as to discuss solid objects without actu-
ally constructing or naming those objects. In fact, this is a standard feature of 
Menelaos’ style, and there is only one proposition of the text that constructs 
and names solid objects – namely, the famous Sector !eorem, M.Sph. III.1.

98 Saito, “Index,” 1997, Girishia Sugaku, 1998; Netz, Shaping, 1999, p. 216-235.
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We can call this style an implicitly solid approach, to contrast it with the fully 
surface style of M.Sph. I.26 and the explicitly solid style of M.Sph. III.1.99  With 
the exception of M.Sph. III.1, Menelaos always uses the implicitly solid or fully 
surface styles, with a systematic tendency to introduce the implicitly solid 
approach in the early part of a theory, where necessary, and then to dispense 
with it as soon as possible, so that he can work entirely on the surface of the 
sphere.

In fact, all three styles are also found in !eodosios’ Spherics. For example, 
we have already seen the fully surface style in !.Sph. II.14 and the explicitly 
solid style in !.Sph. II.11, II.12, and III.3. !eodosios also employs the implic-
itly solid manner of handling solid objects, but it is not used systematically, 
or preferentially. Indeed, in !eodosios’ Spherics this approach to introducing 
solid objects may have simply been used so as to avoid clu"ering the diagrams, 
without any deliberate a"empt to develop a more intrinsic geometry.

In order to see how this was done, we may look at two examples from 
!.Sph. II.13, which is, in fact, the #rst theorem in the text in which either of 
!.Sph. II.11 or II.12 is applied. !.Sph. II.13 shows that if a pair of great circles 
are tangent to a pair of small circles and intersect other small circles parallel 
to the original pair, then they cut o% certain pairs of similar arcs from all the 
small circles between the tangent pair, and the arcs of the great circles between 
any two small circles are equal. Because the theorem is long and somewhat 
involved, we will not read through the whole thing. Instead, we will simply 
look at couple of passages from the demonstration.

Initially, in the exposition, it is asserted that there are three parallel circles, 
pC(ABGD), pC(EZHQ), and pC(KL), with great circles, gC(AKG) and  
gC(BLD), tangent to pC(KL) at points K and L, respectively (see Fig. 
15). !en, in the construction, point M is taken as the pole of the parallels, 
!.Sph. I.21, and gArc(MK) and gArc(ML) are drawn, !.Sph. I.20. !e 
demonstration begins by showing that gArc(MK) and gArc(ML) will pass 
through the poles of gC(AKG) and gC(BLD), respectively, and then contin-
ues as follows:

 

99 Notice that propositions in the fully surface style may also rely on propositions that them-
selves explicitly introduce solid objects – such as !.Sph. II.11 in M.Sph. I.26 – but they do 
not themselves make any mention of solid objects.
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Fig. 15: (le$) Diagram for !.Sph. II.13. For the manuscript diagram see Vat.gr. 204, 
f. 15v. (right) Perspective diagram of a selection of the objects in !.Sph. II.13. Not 
found in our sources.

And since equal and upright segments of circles, KM and what is con-
tinuous with them, are set up on diameters in equal circles, AEKHGT 
and BZLQDT, from points K and L, while KM and LM are equal cir-
cumferences [that is, arcs] cut o% from them,100 being less than half 
of the whole, and the straight line joining from M to A is equal to the 
straight line joining from M to D,101 therefore, the cut-o% circumferenc-
es are equal.102 !erefore, circumference AK is equal to circumference 
LD.103

!is is an application of !.Sph. II.11 in which both the segments and 
the circles upon which they are perpendicular are great circles, and the lines 
that join the endpoints of the arcs are polar radii of pC(ABGD). In this case, 
the diameters upon which the segments stand, as well as the polar radii, are 
simply described, but they are neither constructed nor named. In the accom-
panying perspective diagram, these are drawn as do"ed lines, in gray (see 
Fig. 15 (right)). A few steps later in the demonstration, it is established that 
gArc(AKG) = gArc(DLB), a$er which the text reads, “!erefore the straight 
line joining from A to G is equal to the straight line joining from D to B”, which 
is an application of Elem. III.28.104

100 !.Sph. I.def.5, Elem. III.28.
101 !.Sph. I.def.5.
102 !.Sph. II.11.
103 Czinczenheim, Sphériques de "éodose, 2000, p. 99.
104 Ibid.
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In both of these cases, we see that !eodosios applies solid considerations 
without actually introducing any objects that are not on the surface of the 
sphere. !e usual idiom for this style of argument is that a line is said to be that 
“joining from A to B”. !is expression is the primary indication of the implic-
itly solid style, because although such lines, and the #gures they produce, are 
needed for the argument, in terms of the usual idioms of Greek mathematical 
texts, they are merely implied – the lines are never explicitly introduced in the 
exposition or construction, they are never assigned a speci#c le"er-name, and 
they are not depicted in the diagram, in contrast to the approach in explicitly 
solid propositions.

In fact, the implicitly solid style is used in 10 propositions of the !eodo-
sios’ Spherics: II.13, II.19, II.22, II.23, III.5, III.6, III.7, III.8, III.12, and III.13. 
!e fully surface style, however, is used in 12 propositions: I.21, II.4-II.8, II.14, 
II.16, II.18, II.20, III.9, III.10, and III.14. !eodosios’ overwhelming prefer-
ence, however, is for explicitly solid methods, which are used in 34 proposi-
tions: I.1-I.20, II.1-II.3, II.9-II.12, II.15, II.17, II.21, III.1-III.3, and III.11.105 As 
we see, !eodosios uses all three approaches and shows no reluctance to use 
any of them. Although for individual groups of theorems or theories, he o$en 
starts with an explicitly solid approach, then moves on to the implicitly solid 
style and #nally ends with fully surface methods, this probably simply comes 
about because later results are based on those that come before; and, hence, he 
does not need to further consider the solid objects that were involved in estab-
lishing the earlier theorems. !is can be contrasted with Menelaos’ style which 
shows a strong preference for avoiding explicitly solid constructions. While 
the use of such stylistic features in the argument may strike us as mathemati-
cally super#cial, they seem to have been a key feature of Menelaos’ project of 
developing an intrinsic geometry of the sphere.

5. Conclusion

In comparing the methods of !eodosios and Menelaos, we have seen that 
although Menelaos sought to develop an intrinsic geometry of the sphere, on 
analogy with the geometry of the plane, he used the constructive and founda-
tional methods of the !eodosios’ Spherics. !at is, he based his constructions 
on those in the earlier Spherics, and he used the congruence theorems of that 
text, particularly !.Sph. II.11 and II.12. Furthermore, the core analogy that 

105 I do not include !.Sph. I.22 and I.23 in these considerations (see note 21, above).
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Menelaos systematically applies in developing his theory of spherical #gures 
– namely, gCS D lE and sCS D CE – was already at work, albeit faintly, in !eodo-
sios’ problems. Finally, in his approach to construction, Menelaos also appears 
to have been inhuenced by the work of Apollonios in rewriting the foundations 
of plane geometry.

When we speak of Menelaos developing an intrinsic geometry of spheri-
cal #gures, what we mean is that he demonstrated propositions that are anal-
ogous to, and di%erent from, speci#c propositions of Euclid’s Elements, or of 
later reworkings of this material, such as those by Apollonios and, perhaps, 
himself. !at is, he does not start by assuming certain intrinsic properties of 
spherical #gures, such as that which he shows in M.Sph. I.26, discussed above, 
but rather with the methods and propositions that were handed down to him 
from Euclid, Apollonios, and !eodosios. Just as !eodosios produced analo-
gies between various properties of the sphere and spherical #gures with those 
established in Elements III, the theory of the circle, Menelaos explored anal-
ogies and di%erences with the properties of the plane triangle, as set out in 
Elements I and VI. In following this technique of investigating similarities and 
di%erences with the known properties of well-established objects, Menelaos 
was pursuing a common strategy of Greco-Roman mathematicians.106

As we saw, the most important theorems of the Menelaos’ Spherics, and in 
particular the early congruence theorems, rely on operations that are abstrac-
tions of the motions of a rigid compass in three dimensional space, as well 
as !eodosios’ congruence theorems, which are themselves explicitly cast in 
terms of solid con#gurations. Nevertheless, when Menelaos employs these, 
he does so in such a way as to downplay the underlying solid nature of these 
methods. From our perspective, this boarders on a super#cial, essentially sty-
listic, avoidance, because, despite the fact that he does not construct or name 
the solid objects, they continue to play an essential role his proofs. Indeed, the 
intrinsic approach that Menelaos takes could be said to be more stylistic than 
essential. He does not construct solid objects or name them, but he still uses 
them. He does not postulate any properties of spherical #gures that set them 
apart from plane objects. Instead, he shows individual similarities and di%er-
ences with plane objects, o$en by showing proposition by proposition ana-
logs and divergences with Euclid’s Elements. In this sense, Menelaos’ spherical 
geometry is still embedded in his Euclidean sources, in both methodology and 
conception.

106 Fried And Unguru, Apollonius, 2001, p. 332-363; Fried, “!e Use of Analogy”, 2003; 
Acerbi, “Homeomeric lines”, 2010.
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If we consider the importance of the role of construction, however, we can 
make a more sympathetic reading of Menelaos’ practice. In such a reading we 
would distinguish the ontological status of objects that have been constructed, 
and objects that are merely considered in the argument. !is distinction would 
be similar to that between objects that are introduced as part of a problem-con-
struction and those that are introduced in a proof-construction, and may, in fact, 
be counterfactual.107 In this interpretation, Menelaos shows an overwhelming 
preference for only constructing objects that are on the surface of the sphere 
– the only exceptions are certain solid lines in M.Sph. III.1. Objects on the 
surface of the sphere, having been constructed and named, may be thought 
of as actually there – having been drawn on an actual sphere, or produced by 
some mental act. !e other objects that are discussed but never named, would, 
then, have a sort of hypothetical status. Menelaos considers the properties that 
such objects would have if they were produced, and makes arguments based 
on these properties, but he does not claim that they are actually there. In this 
sense, one could argue that while he considers and makes use of the properties 
of these hypothetical objects, he never brings them fully into the discourse, so 
that the only objects that he actually needs to construct, or draw, are those on 
the surface of the sphere.

One of the most unfortunate circumstances surrounding Menelaos’ brilliant 
new approach to the geometry of the sphere is how li"le it was appreciated or 
further developed in antiquity. Although the concept of the spherical trian-
gle and some of the early propositions about triangles were used by Ptolemy 
in his work on spherical astronomy, Ptolemy does not adopt any of the more 
advanced material of Menelaos’ spherical trigonometry. Although, at least the 
early parts of Menelaos’ Spherics were read by mathematicians such as Pappus 
and !eon and used in their commentaries on astronomical texts, and some 
later readers may have supplied some lemmas and cases to the text itself,108 
no one appears to have taken up the project of exploring the similarities and 
di%erences of #gures on the sphere in relation to those in the plane, nor of 
further investigating the metrical properties of spherical #gures. Further inves-
tigations of such ma"ers would have to wait until the classical Islamic period, 
when Menelaos’ text was studied in its entirety, and his ideas and methods 
were pushed in new directions.

107 Sidoli, “Uses of construction”, p. 410-417.
108 Acerbi, “Traces of Menelaus’ Sphaerica,” 2015 (especially p. 112).

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



82

Nathan Sidoli

References

Acerbi F., “Homeomeric lines in Greek mathematics”, Science in Context, 23, 2010, p. 1-37.

Acerbi F., La sintassi logica della matematica greca, Archives-ouvertes.fr, Sciences de l’Homme 
et de la Société, Histoire, Philosophie et Sociologie des Sciences. h"ps://hal.archives-
ouvertes.fr/hal-00727063, 2011.

Acerbi F., “Traces of Menelaus’ Sphaerica in Greek scholia to the Almagest”, Sciamvs, 2015, 16, 
p. 91-124.

Acerbi F., “Two Approaches to Foundations in Greek Mathematics: Apollonius and Geminus”, 
Science in Context, 23, 2010, p. 151-186.

Acerbi F., “Types, function, and organization of the collections of scholia to the Greek 
mathematical treatises”, Trends in Classics, 6, 2014, p. 115-169.

Aujac G., “Le langage formulaire dans la géométrie grecque”, Revue d’histoire des sciences, 37, 
1984, p. 97-109.

Berggren J. L., “!e relation of Greek spherics to early Greek astronomy”, Science & Philosophy 
in Classical Greece, Bowen A.C. (ed.), New York: Garland, 1991, p. 227-248.

Bjørnbo A. A., Studien über Menelaos’ Sphärik. Beiträge zur Geschichte der Sphärik und 
Trigonometrie der Griechen, Abhandlungen zur Geschichte der mathematischen Wissenscha-en, 
He$ 14, Leipzig: Teubner, 1902.

Bulmer-Thomas I., “!eodosius of Bithynia”, Dictionary of Scienti#c Biography, vol.13, 
Gillispie C. G. (ed.), New York: Charles Scribner’s Sons, 1970, p. 319-321.

Busemann H., “Spaces with non-positive curvature”, Acta Mathematica, 80, 1948, p. 259-310.

Clavius C., "eodosii Tripolitae Sphaericorum libri III, Roma: Domenico Basa, 1586.

Czinczenheim C., Edition, traduction et commentaire des Sphériques de "éodose, !èse de 
doctorat de l’université Paris IV, Lille: Atelier national de reproduction des thèses, 2000.

Fried M., “!e Use of Analogy in Book VII of Apollonius’ Conica”, Science in Context, 16, 2003, 
p. 349-365.

Fried M., Unguru S., Apollonius of Perga’s Conica: Text, Context, Subtext, Leiden: Brill, 2001.

Friedlein G., Procli Diadochi in primum Euclidis Elementorum librum commentarii, Leipzig: 
Teubner, 1873.

Heath T. L., A History of Greek Mathematics, 2 vols., Oxford: Oxford University Press, 1921 
(Reprint, New York: Dover, 1981.)

Heiberg J. L., Li!erargeschichtliche Studien Über Euklid, Leipzig: Teubner, 1882.

Heiberg J. L., "eodosius Sphaerica, Abhandlungen der Akademie der Wissenscha$en in 
Gö"ingen. Philologisch-Historische Klasse; n.F., Bd. 19, Nr. 3, Berlin: Weidmannsche 
Buchhandlung, 1927.

Heiberg J. L., Stamatis E. S., Euclidis Elementa, Euclidis opera omnia, vols. 1-5, Leipzig: 
Teubner, 1969-1977.

Hoche R., Nicomachi Geraseni Pythagorei introductionis arithmeticae libri ii, Leipzig: Teubner, 
1866.



83

Constructions and Foundations in the Spherics of Theodosios and Menelaos

Huffman C. A., Archytas of Terentum: Pythagorean, Philosopher and Mathematician King, 
Cambridge: Cambridge University Press, 2005.

Hultsch F., “Autolykos und Euklid”, Berichte über die Verhandlungen der Königlich Sächsischen 
Gesellscha- der Wissenscha-en, Philologisch-Historische Klasse, 38/39, 1886, p. 128-155.

Knorr W., "e Ancient Tradition of Geometric Problems, Boston: Birkhäuser, 1986. (Reprinted, 
Dover: New York, 1993.)

Krause M., Die Sphärik von Menelaos aus Alexandrien in der Verbesserung von Abū Nas. r Mans. ūr 
b. Alī b. Irāq mit Untersuchungen zur Geschichte des Texte bei den islamischen Mathematikern, 
Berlin: Weidmannsche Buchhandlung, 1936.

Kunitzsch P., Lorch R., "eodosius Spherica, Arabic and Medieval Latin, Stu"gart: Franz 
Steiner, 2010.

Nadal R., Taha A., Pinel P., “Le contenu astronomique des Sphériques de Ménélaos”, Archive 
for History of Exact Sciences, 58, 2004, p. 381-436.

Netz R., “Proclus’ division of the mathematical proposition into parts: How and why was it 
formulated?”, Classical Quarterly (N.S.) 49, 1999, p. 282-303.

Netz R., "e Shaping of Deduction in Greek Mathematics, Cambridge: Cambridge University 
Press, 1999.

Neugebauer O., A History of Ancient Mathematical Astronomy, New York: Springer, 1975.

Nizze E., "eodosii Tripolitae, Sphaericorum libros tres, Berlin: George Reimer, 1852.

Nizze E., "eodosius Von Tripolis, Drei Bücher Kugelschni!e, Stralsund: Carl Löjer, 1826.

Rashed R., Bellosta H., Apollonius de Perge, La section des droites selon des rapports, Berlin: 
Walter de Gruyter, 2010.

Rashed R., Papadopoulos A., Menelaus’ Spherics: Early Translation and al-Māhānī/al-Harawī’s 
Version, Berlin: Walter de Gruyter, 2017.

Saito K., Girishia Sugaku no Tool Box no Fukugen, Research Report, Sakai: Osaka Prefecture 
University, 1998.

Saito K., “Index of the propositions used in Book 7 of Pappus’ Collection”, Jinbunn Kenkyu: "e 
Journal of the Humanities, Chiba University, 26, 1997, p. 155-188.

Schmidt O. H., On the Relation between Ancient Mathematics and Spherical Astronomy, PhD 
!esis, Brown University, Department of Mathematics, 1943.

Sidoli N., “!e concept of given in Greek mathematics”, Archive for History of Exact Sciences 72, 
2018, p. 353-402.

Sidoli N., “Review of Menelaus’ Spherics: Early Translation and al-Māhānī/al-Harawī’s Version 
by Roshdi Rashed and Athanase Papadopoulos”, Aestimatio, 14, 2020, p. 14-21.

Sidoli N., “!e sector theorem a"ributed to Menelaus”, Sciamvs, 7, 2006, p. 43-79.

Sidoli N., “Uses of construction in problems and theorems in Euclid’s Elements I-VI”, Archive for 
History of Exact Sciences, 72, 2018, p. 403-452.

Sidoli N., Isahaya Y., "ābit ibn Qurra’s Restoration of Euclid’s Data (Kitāb Uqlīdis fī 
al-Muṭaīyāt): Text, Translation, Commentaries, New York: Springer, 2018.

Sidoli N., Kusuba T., “Al-Harawī’s version of Menelaus’ Spherics”, Suhayl, 13, 2014, p. 149-212.

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



84

Nathan Sidoli

Sidoli N., Saito K., “!e role of geometrical construction in !eodosius’s Spherics”, Archive for 
History of Exact Sciences, 63, 2009, p. 581-609.

Stone E., Clavius’s Commentary on the Spheriks of "eodosius Tripolitae, London: J. Senex, 1721.

Ver Eecke P., Les Sphériques de "éodose de Tripoli, Bruges : Desclée De Brouwer, 1927 
(Réimprimé, Paris : Albert Blanchard, 1959).


